Part Number Hot Search : 
BCR11407 CPZRL7 PCS4S S1048 MCS434D SG723L DM7402 WM877205
Product Description
Full Text Search
 

To Download MT90868 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MT90868
High Bandwidth Digital Switch Data Sheet
Features
* * * * * * * * * * * 32,768-channel x 8,192-channel blocking switching between backplane and local streams 8,192-channel x 8,192-channel non-blocking switching for local input and output streams 1,024-channel x 1,024-channel switch between two selected backplane input and output streams Rate conversion between backplane and local streams Accepts ST-BUS streams with data rate of 16.384Mb/s or 32.768Mb/s for backplane port Accepts ST-BUS streams with data rate of 8.192Mb/s for local port Per-stream channel and bit delay for the local input streams Per-stream channel and bit advancement for the local output streams Per-stream bit delay for the backplane input streams Per-stream bit advancement for the backplane output streams Per-channel constant throughput delay
BIME
VDD_IO VDD_core
December 2002
Ordering Information MT90868AG 466 Ball-PBGA
-40 to +85 C * * * * Per-channel high impedance output control for local streams Per-channel high impedance or driven-high output control for backplane streams Per-channel message mode for backplane and local output streams Pseudo-Random Binary Sequence (PRBS) pattern generation and testing for local and backplane ports Non-multiplexed microprocessor interface Connection memory block programming for fast device initialization Tristate-control outputs for external drivers on local port
RESET ODE
* * *
VSS (GND)
Bit De-multiplexer
Mux
Output Mux
Bit Multiplexer
BSTo0-63 Mux
Backplane Interface P/S Converter
Loopback Data Memory (1,024 channels)
Local Connection Memory (8,192 locations)
Mux
S/P Converter
Local Interface P/S Converter
Backplane Interface
Backplane Data Memories (32,768 channels)
Mux
BSTi0-63
Output Channel Advancement Buffer
LSTo0-63
LCSTo0-3 FP4o FP8o FP16o C4o C8o C16o
Local Timing Unit Local Interface S/P Converter
Local Data Memories (8,192 channels) Output Mux Backplane Connection Memory (32,768 locations)
Mux
FP8i
Backplane Timing Unit
Input Channel Delay Buffer
LSTi0-63
C8i
APLL
Microprocessor Interface and Internal Registers
Test Port
IC0-IC5
TM1 TM2 SG1 AT1 DT1
DS
CS
R/W
A15-A0
DTA
D15-D0
TMS TDi
TDo
TCK TRST
Figure 1 - Functional Block Diagram
Zarlink Semiconductor Inc. 1
MT90868
* * * Conforms to the mandatory requirements of the IEEE-1149.1 (JTAG) standard 1.8V core supply voltage 3.3V I/O supply voltage with 5V tolerant I/O's
Data Sheet
Applications
* * * * Mediation switches High capacity TDM switching platforms utilizing DS-3/OC-3 rates Central office switches Access equipment
Description
The MT90868 Digital Switch provides switching capacities of 32,768 x 8,192 channels between backplane and local streams, 8,192 x 8,192 channels among local streams and 1,024 x 1,024 channels among two selected backplane streams. The local port has sixty-four input and sixty-four output streams which operate at 8.192Mb/s. The backplane port has sixty-four input and sixty-four output streams which operate at 16.384Mb/s or 32.768Mb/s. The MT90868 has features that are programmable on per-stream or per-channel basis including message mode, input bit delay, output bit advancement, constant throughput delay, high impedance output control for both local and backplane streams and the driven-high backplane output control.
2
Zarlink Semiconductor Inc.
Data Sheet
MT90868
BSTo BSTo BSTi BSTi BSToBSTo IC3 BSTi BSTi BSTi BSTi LSTo LSTo LSTo LSTo LSTo LSTo LSTo LSTi LSTi LSTo LSTo LSToLSTo LSTo LSTo C C _13 _12 _15 _12 _7 _4 _4 _2 _0 _7 _63 _60 _59 _57 _55 _53 _51 _51 _48 _43 _42 _41 _40 _39 _38 BSTo BSTo BSTi Vss Vdd_ Vss IC4 IC5 IC1 IC2 IC0 LSTo LSToLSTo LSTo LSTo LSTo LSTo LSTo LSTo Vss Vdd_ LSTo LSTo LSTo Vss _37 _36 _35 D D _15 _14 _16 _62 _61 _58 _56 _54 _52 _50 _49 _48 io io BSTi BSTi BSTi Vdd_ E _19 _18 _17 io BSTi BSTi BSTi F _22 _21 _20 Vss BSTo BSTo BSTi Vdd_ G _17 _16 _23 core BSTo BSToBSTo BSTo H _21 _20 _19 _18 Vss BSTo BSTo BSTi BSTi Vdd_ J _22 _23 _25 _24 io BSTo BSTo BSTi BSTi K _25 _24 _27 _26 Vss BSTo BSTo BSTi BSTi Vdd_ L _27 _26 _28 _29 io BSTo BSTo BSTi BSTi Vdd_ M _29 _28 _30 _31 core BSTo BSTo BSTi BSTi N _30 _31 _33 _32 Vss BSTo BSTo BSTi BSTi P _33 _32 _34 _35 Vss BSTo BSTo BSTi BSTi Vdd_ R _35 _34 _37 _36 core BSTo BSTo BSTi BSTi Vdd_ T _37 _36 _39 _38 io
U V W Y
Vdd_ Vdd_ Vss Vdd_ Vss Vdd_ Vdd_ Vdd_ Vdd_Vdd_ Vss Vss core io Vss io Vss core core io io core
R
1 2 3 BSTo BSTo BSTi A _8 _9 _13 BSTo BSTo BSTi B _10 _11 _14
1
4 6 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 5 7 9 BSTi BSTi BSToBSToBSTo BSTi BSTi TDi TCK TDo LSTi LSTi LSTi LSTi LSTi LSTi LSTi LSTo LSTo LSTi LSTi LSTi LSTi _62 _61 _59 _57 _54 _53 _50 _47 _46 _47 _46 _44 _42 A _6 _3 _11 _9 _6 _3 _1 BSTi BSTi BSToBSTo BSTo BSTi BSTi _5 _1 TRSTTMS _10 _8 _5 _2 _0 LSTi LSTi LSTi LSTi LSTi LSTi LSTi LSTo LSTo LSTi LSTi LSTi LSTi _63 _60 _58 _56 _55 _52 _49 _45 _44 _45 _43 _41 _40 B
es et
Vdd_ LSTo LSTo LSTo io _34 _33 _32 E LSTi Vss _39 Vdd_ LSTi core _36 Vss Vdd_ LSTo _31 io Vdd_LSTo LSTo core _30 _29 LSTi _38 LSTi _35 LSTi _33 LSTi _31 LSTi _37 F LSTi _34 G LSTi H _32 LSTi _28 J
Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss Vss
LSToLSTo LSTo LSTi LSTi _28 _27 _26 _30 _27 K Vdd_LSTo LSTo LSTi LSTi io _24 _25 _29 _26 L Vdd_LSTo LSTo LSTi LSTi M core _23 _22 _25 _24 Vdd_LSTo LSTo LSTi LSTi N io _21 _20 _23 _20 Vss LSTo LSTo _18 _19 Vdd_LSTo LSTo Core _17 _16 Vdd_LSTo LSTo io _15 _14 LSTo LSTo Vss _12 _13 Vdd_LSTo LSTo core _8 _11 LSTo Vss Vdd _10 io Vdd_LSTo core _9 Vss LSTi _22 LSTi _21 LSTi _17 LSTi _15 LSTi _14 LSTi _13 LSTi _9 LSTi P _19 LSTi _18 R LSTi T _16 LSTi _12 U LSTi _11 V LSTi _10 W LSTi Y _8
BSTo BSTo _38 _39 BSTo BSTo _41 _40 BSTo BSTo _43 _42 BSTo BSTo _45 _44
BSTi BSTi _40 _41 Vss BSTi BSTi Vdd_ io _42 _45 BSTi BSTi Vss _43 _47 BSTi Vdd_ _44 core
TOP VIEW
BSTo BSTo BSTi AA _46 _47 _46 Vss BSTi BSTi BSTi Vdd_ AB _48 _49 _50 io
AC
LSTo LSToLSTo _7 _6 _5 AA
Vss
Vdd_ Vss Vdd_ Vdd_ Vdd_ Vdd_ Vdd_ Vss io Vss io Vss core Vss core core io A4 A8 A7 A6 A5 Vdd_ A10 Core A1 A2 A3 A9 A14 A11 A15 D3 D2 D1 D0 16
Vdd_LSTo LSTo LSTo io _4 _3 _2 AB LSTi AC _6 LSTi AD _4 LSTi AE _2
BSTi BSTi BSTi Vdd_ Vdd_ Vdd_ _51 _52 _53 core io Vss core FP8i BSTi BSTi BSTi BSTi BSTi BSTi AD _54 _55 _57 _56 _58 _62 ODE BIME BSTo BSToBSTo BSTo BSTi BSTi BSTo BSTo AE _48 _50 _53 _54 _59 _63 _56 _59
BSTo BSTo DT1 C8i CLK A0 A13 _63 _62 BYPS BSTo BSTo BSToBSTo BSTi BSTi BSTo BSTo BSTo BSTo SG1 TM2 TM1 AT1 A12 AF _49 _51 _52 _55 _60 _61 _57 _58 _60 _61 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Vdd_ LSTo LSTi D7 D11 D15 core Vss Vss Vss _1 _7 LCS LCS LCS LCS LSTo LSTi D6 D10 D14 To_0 To_1 To_2 To_3 _0 _5 LSTi D5 D9 D13 DTA DS C4o C8o C16o _3 D4 17 D8 D12 R/W CS 18 19 20 21 FP 4o 22
FP FP LSTi LSTi AF _1 8o 16o _0 23 24 25 26
1
- A1 corner is identified by metallized markings.
Figure 2 - 35mm x 35mm PBGA (JEDEC MO-151) Pinout
Zarlink Semiconductor Inc.
3
MT90868
Ball Signal Assignment
Ball Number Signal Name Ball Number Signal Name Ball Number
Data Sheet
Signal Name
A26 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 B24 B25
LSTi42 BSTo10 BSTo11 BSTi14 BSTi10 BSTi8 BSTo5 BSTo2 BSTo0 BSTi5 BSTi1 TRST TMS RESET LSTi63 LSTi60 LSTi58 LSTi56 LSTi55 LSTi52 LSTi49 LSTo45 LSTo44 LSTi45 LSTi43 LSTi41
B26 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25
LSTi40 BSTo13 BSTo12 BSTi15 BSTi12 BSTo7 BSTo4 IC3 BSTi7 BSTi4 BSTi2 BSTi0 LSTo63 LSTo60 LSTo59 LSTo57 LSTo55 LSTo53 LSTo51 LSTi51 LSTi48 LSTo43 LSTo42 LSTo41 LSTo40 LSTo39
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25
BSTo8 BSTo9 BSTi13 BSTi11 BSTi9 BSTo6 BSTo3 BSTo1 BSTi6 BSTi3 TDi TCK TDo LSTi62 LSTi61 LSTi59 LSTi57 LSTi54 LSTi53 LSTi50 LSTo47 LSTo46 LSTi47 LSTi46 LSTi44
4
Zarlink Semiconductor Inc.
Data Sheet
Ball Number Signal Name Ball Number Signal Name Ball Number
MT90868
Signal Name
C26 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 D25
LSTo38 BSTo15 BSTo14 BSTi16 GND VDD_IO GND IC4 IC5 IC1 IC2 IC0 LSTo62 LSTo61 LSTo58 LSTo56 LSTo54 LSTo52 LSTo50 LSTo49 LSTo48 GND VDD_IO GND LSTo37 LSTo36
D26 E1 E2 E3 E4 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E18 E19 E20 E23 E24 E25 E26 F1 F2 F3
LSTo35 BSTi19 BSTi18 BSTi17 VDD_IO VDD_CORE GND VDD_IO GND VDD_IO VDD_CORE GND GND VDD_CORE VDD_IO GND VDD_IO GND VDD_CORE VDD_IO LSTo34 LSTo33 LSTo32 BSTi22 BSTi21 BSTi20
F4 F23 F24 F25 F26 G1 G2 G3 G4 G23 G24 G25 G26 H1 H2 H3 H4 H5 H22 H23 H24 H25 H26 J1 J2 J3
GND GND LSTi39 LSTi38 LSTi37 BSTo17 BSTo16 BSTi23 VDD_CORE VDD_CORE LSTi36 LSTi35 LSTi34 BSTo21 BSTo20 BSTo19 BSTo18 GND GND VDD_IO LSTo31 LSTi33 LSTi32 BSTo22 BSTo23 BSTi25
Zarlink Semiconductor Inc.
5
MT90868
Ball Number Signal Name Ball Number Signal Name Ball Number
Data Sheet
Signal Name
J4 J5 J22 J23 J24 J25 J26 K1 K2 K3 K4 K5 K10 K11 K12 K13 K14 K15 K16 K17 K22 K23 K24 K25 K26 L1
BSTi24 VDD_IO VDD_CORE LSTo30 LSTo29 LSTi31 LSTi28 BSTo25 BSTo24 BSTi27 BSTi26 GND GND GND GND GND GND GND GND GND LSTo28 LSTo27 LSTo26 LSTi30 LSTi27 BSTo27
L2 L3 L4 L5 L10 L11 L12 L13 L14 L15 L16 L17 L22 L23 L24 L25 L26 M1 M2 M3 M4 M5 M10 M11 M12 M13
BSTo26 BSTi28 BSTi29 VDD_IO GND GND GND GND GND GND GND GND VDD_IO LSTo24 LSTo25 LSTi29 LSTi26 BSTo29 BSTo28 BSTi30 BSTi31 VDD_CORE GND GND GND GND
M14 M15 M16 M17 M22 M23 M24 M25 M26 N1 N2 N3 N4 N5 N10 N11 N12 N13 N14 N15 N16 N17 N22 N23 N24 N25
GND GND GND GND VDD_CORE LSTo23 LSTo22 LSTi25 LSTi24 BSTo30 BSTo31 BSTi33 BSTi32 GND GND GND GND GND GND GND GND GND VDD_IO LSTo21 LSTo20 LSTi23
6
Zarlink Semiconductor Inc.
Data Sheet
Ball Number Signal Name Ball Number Signal Name Ball Number
MT90868
Signal Name
N26 P1 P2 P3 P4 P5 P10 P11 P12 P13 P14 P15 P16 P17 P22 P23 P24 P25 P26 R1 R2 R3 R4 R5 R10 R11
LSTi20 BSTo33 BSTo32 BSTi34 BSTi35 GND GND GND GND GND GND GND GND GND GND LSTo18 LSTo19 LSTi22 LSTi19 BSTo35 BSTo34 BSTi37 BSTi36 VDD_CORE GND GND
R12 R13 R14 R15 R16 R17 R22 R23 R24 R25 R26 T1 T2 T3 T4 T5 T10 T11 T12 T13 T14 T15 T16 T17 T22 T23
GND GND GND GND GND GND VDD_CORE LSTo17 LSTo16 LSTi21 LSTi18 BSTo37 BSTo36 BSTi39 BSTi38 VDD_IO GND GND GND GND GND GND GND GND VDD_IO LSTo15
T24 T25 T26 U1 U2 U3 U4 U5 U10 U11 U12 U13 U14 U15 U16 U17 U22 U23 U24 U25 U26 V1 V2 V3 V4 V5
LSTo14 LSTi17 LSTi16 BSTo38 BSTo39 BSTi40 BSTi41 GND GND GND GND GND GND GND GND GND GND LSTo12 LSTo13 LSTi15 LSTi12 BSTo41 BSTo40 BSTi42 BSTi45 VDD_IO
Zarlink Semiconductor Inc.
7
MT90868
Ball Number Signal Name Ball Number Signal Name Ball Number
Data Sheet
Signal Name
V22 V23 V24 V25 V26 W1 W2 W3 W4 W5 W22 W23 W24 W25 W26 Y1 Y2 Y3 Y4 Y23 Y24 Y25 Y26 AA1 AA2 AA3
VDD_CORE LSTo8 LSTo11 LSTi14 LSTi11 BSTo43 BSTo42 BSTi43 BSTi47 GND GND VDD_IO LSTo10 LSTi13 LSTi10 BSTo45 BSTo44 BSTi44 VDD_CORE VDD_CORE LSTo9 LSTi9 LSTi8 BSTo46 BSTo47 BSTi46
AA4 AA23 AA24 AA25 AA26 AB1 AB2 AB3 AB4 AB8 AB9 AB10 AB11 AB12 AB13 AB14 AB15 AB16 AB17 AB18 AB19 AB23 AB24 AB25 AB26 AC1
GND GND LSTo7 LSTo6 LSTo5 BSTi48 BSTi49 BSTi50 VDD_IO GND VDD_IO GND VDD_CORE GND VDD_CORE GND VDD_CORE VDD_IO GND VDD_IO GND VDD_IO LSTo4 LSTo3 LSTo2 BSTi51
AC2 AC3 AC4 AC5 AC6 AC7 AC8 AC9 AC10 AC11 AC12 AC13 AC14 AC15 AC16 AC17 AC18 AC19 AC20 AC21 AC22 AC23 AC24 AC25 AC26 AD1
BSTi52 BSTi53 VDD_CORE VDD_IO GND VDD_CORE FP8i A4 A7 A5 VDD_CORE A10 A9 A14 D3 D7 D11 D15 VDD_CORE GND GND GND LSTo1 LSTi7 LSTi6 BSTi54
8
Zarlink Semiconductor Inc.
Data Sheet
Ball Number Signal Name Ball Number Signal Name Ball Number
MT90868
Signal Name
AD2 AD3 AD4 AD5 AD6 AD7 AD8 AD9 AD10 AD11 AD12 AD13 AD14 AD15 AD16 AD17 AD18 AD19 AD20 AD21 AD22 AD23 AD24 AD25 AD26 AE1
BSTi55 BSTi57 BSTi56 BSTi58 BSTi62 ODE BIME A8 A6 A1 A2 A3 A11 A15 D2 D6 D10 D14 LCSTo0 LCSTo1 LCSTo2 LCSTo3 LSTo0 LSTi5 LSTi4 BSTo48
AE2 AE3 AE4 AE5 AE6 AE7 AE8 AE9 AE10 AE11 AE12 AE13 AE14 AE15 AE16 AE17 AE18 AE19 AE20 AE21 AE22 AE23 AE24 AE25 AE26 AF1
BSTo50 BSTo53 BSTo54 BSTi59 BSTi63 BSTo56 BSTo59 BSTo63 BSTo62 DT1 C8i CLKBYPS A0 A13 D1 D5 D9 D13 DTA DS C4o C8o C16o LSTi3 LSTi2 BSTo49
AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 AF16 AF17 AF18 AF19 AF20 AF21 AF22 AF23 AF24 AF25 AF26
BSTo51 BSTo52 BSTo55 BSTi60 BSTi61 BSTo57 BSTo58 BSTO60 BSTO61 SG1 TM2 TM1 AT1 A12 D0 D4 D8 D12 R/W CS FP4o FP8o FP16o LSTi0 LSTi1
Zarlink Semiconductor Inc.
9
MT90868
Pin Description
PBGA Ball Number E12, E15, E20, E7, G23, G4, J22, M22, M5, R22, R5, V22, Y23, Y4, AB11, AB13, AB15, AC20, AC4, AC7. D22, D5, E11, E16, E18, E23, E4, E9, H23, J5, L22, L5, N22, T22, T5, V5, W23, AB16, AB18, AB23, AB4, AB9, AC5. M15, M16, M17, N10, N11, N12, N13, N14, N15, N16, N17, N5, P10, P11, P12, P13, P14, P15, P16, P17, P22, P5, R10, R11, R12, R13, R14, R15, R16, R17, T10, T11, T12, T13, T14, T15, T16, T17, U10, U11, U12, U13, U14, U15, U16, U17, U22, U5, W22, W5. C11, B10, C10, A10, C9, B9, A9, C8, B5, A5, B4, A4, C4, A3, B3, C3, D3, E3, E2, E1, F3, F2, F1, G3, J4, J3, K4, K3, L3, L4, M3, M4, N4, N3, P3, P4, R4, R3, T4, T3, U3, U4, V3, W3, Y3, V4, AA3, W4, AB1, AB2, AB3, AC1, AC2, AC3, AD1, AD2, AD4, AD3, AD5, AE5, AF5, AF6, AD6, AE6. B8, A8, B7, A7, C6, B6, A6, C5, A1, A2, B1, B2, C2, C1, D2, D1, G2, G1, H4, H3, H2, H1, J1, J2, K2, K1, L2, L1, M2, M1, N1, N2, P2, P1, R2, R1, T2, T1, U1, U2, V2, V1, W2, W1, Y2, Y1, AA1, AA2, AE1, AF1, AE2, AF2, AF3, AE3, AE4, AF4, AE7, AF7, AF8, AE8, AF9, AF10, AE10, AE9. AC8 Name VDD_CORE Description
Data Sheet
Power Supply for Core Logic Circuits: +1.8V
VDD_IO
Power Supply for Pads: +3.3V. The VDD_IO supply has to be either established before the power up of the VDD_CORE supply or the VDD_CORE should not "lead" the VDD_IO by more than 0.3V. Ground
Vss (GND)
BSTi0 - 63
Backplane Serial Input Streams 0 to 63 (5V Tolerant Inputs): In 16Mb/s mode, these pins accept serial TDM data streams at 16.384 Mb/s with 256 channels per stream. In 32Mb/s mode, these pins accept serial TDM data streams at 32.768 Mb/s with 512 channels per stream.
BSTo0 - 63
Backplane Serial Output Streams 0 to 63 (5V Tolerant Three-state Outputs): In 16Mb/s mode, these pins have data rate of 16.384 Mb/s with 256 channels per stream. In 32Mb/s mode, these pins have data rate of 32.768 Mb/s with 512 channels per stream.
FP8i
Frame Pulse Input (5V Tolerant Input): This pin accepts the backplane frame pulse which is low for 122ns (one 8.192MHz period) at the frame boundary. The frame pulse frequency is 8kHz. Master Clock Input (5V Tolerant Input): This pin accepts an 8.192MHz clock. The clock falling edge is aligned with the backplane frame boundary. This input must be provided for any function to operate. APLL Bypass clock (5V Tolerant Input): This pin accepts a 131.072MHz clock for device testing purpose. In normal operation, this input MUST be low.
AE12
C8i
AE13
CLKBYPS
10
Zarlink Semiconductor Inc.
Data Sheet
Pin Description (continued)
PBGA Ball Number AF13 AF12 AF11 AF14 Name TM1 TM2 SG1 AT1 Description
MT90868
APLL Test Pin 1 (3.3V Tolerant Input): Used for APLL testing only. In normal operation, this input MUST be low. APLL Test Pin 2 (3.3V Tolerant Input): Used for APLL testing only. In normal operation, this input MUST be low. APLL Test Control (3.3V Tolerant Input): Used for APLL testing only. In normal operation, this input MUST be low. Analog Test Access (3.3V Tolerant I/O): Used for APLL testing only. This pin is pulled low by an internal pull-down resistor. No connection for normal operation. Digital Test Access (3.3V Output): Used for APLL testing only. No connect for normal operation. Chip Select (5V Tolerant Input): Active low input used by the microprocessor to enable the microprocessor port access. Data Strobe (5V Tolerant Input): This active low input works in conjunction with CS to enable the microprocessor port read and write operations. Read/Write (5V Tolerant Input): This input controls the direction of the data bus lines (D0-D15) during a microprocessor access. Address 0 - 15 (5V Tolerant Inputs): These pins form the 16-bit address bus of the microprocessor port.
AE11 AF21
DT1 CS
AE21
DS
AF20
R/W
AE14, AD11, AD12, AD13, AC9, AC11, AD10, AC10, AD9, AC14, AC13, AD14, AF15, AE15, AC15, AD15. AF16, AE16, AD16, AC16, AF17, AE17, AD17, AC17, AF18, AE18, AD18, AC18, AF19, AE19, AD19, AC19. AE20
A0 - A15
D0 - D15
Data Bus 0 - 15 (5V Tolerant I/Os): These pins form the 16-bit data bus of the microprocessor port.
DTA
Data Transfer Acknowledgment (5V Tolerant Output): This active low output indicates that a data bus transfer is complete. A pull-up resistor is required to hold at HIGH level. Test Mode Select (5V Tolerant Input with internal pullup): JTAG signal that controls the state transitions of the TAP controller. This pin is pulled high by an internal pullup resistor when it is not driven. Test Clock (5V Tolerant Input): Provides the clock to the JTAG test logic. Test Serial Data In (5V Input with internal pull-up): JTAG serial test instructions and data are shifted in on this pin. This pin is pulled high by an internal pull-up resistor when it is not driven.
B12
TMS
A12 A11
TCK TDi
Zarlink Semiconductor Inc.
11
MT90868
Pin Description (continued)
PBGA Ball Number A13 Name TDo Description
Data Sheet
Test Serial Data Out (5V Tolerant Three-state Output): JTAG serial data is output on this pin on the falling edge of TCK. This pin is held in high impedance state when JTAG is not enabled. Test Reset (5V Tolerant Input with internal pull-up): Asynchronously initializes the JTAG TAP controller by putting it in the Test-Logic-Reset state. This pin should be pulsed low during power-up to ensure that the device is in the normal functional mode. Device Reset (5V Tolerant Input with internal pull-up): This input (active LOW) puts the device in its reset state that disables the LSTo0 - 63 driver and drives the BSTo0 63, LCSTo-3 outputs to high. It also clears the device registers and internal counters. To ensure proper reset action, the reset pin must be held low for longer than 500ns. A delay of 100s must also be applied before the first microprocessor access is performed after the RESET pin is set high, this delay is required for the initialization of the APLL. In normal operation, this input MUST be connected to ground. In normal operation, this input MUST be connected to ground. In normal operation, this input MUST be connected to ground. In normal operation, this input MUST be connected to ground. In normal operation, this input MUST be connected to ground. In normal operation, this input MUST be connected to ground. Local Serial Input Streams 0 to 63 (5V Tolerant Inputs): These inputs accept data rates of 8.192 Mb/s with 128 channels per stream.
B11
TRST
B13
RESET
D11 D9 D10 C7 D7 D8 AF25, AF26, AE26, AE25, AD26, AD25, AC26, AC25, Y26, Y25, W26, V26, U26, W25, V25, U25,T26,T25, R26, P26, N26, R25, P25, N25, M26, M25, L26, K26, J26, L25, K25, J25, H26, H25, G26, G25, G24, F26, F25, F24, B26, B25, A26, B24, A25, B23, A24, A23, C20, B20, A20, C19, B19, A19, A18, B18, B17, A17, B16, A16, B15, A15, A14, B14.
IC0 IC1 IC2 IC3 IC4 IC5 LSTi0 - 63
12
Zarlink Semiconductor Inc.
Data Sheet
Pin Description (continued)
PBGA Ball Number AD24, AC24, AB26, AB25, AB24, AA26, AA25, AA24, V23, Y24, W24, V24, U23, U24, T24, T23, R24, R23, P23, P24, N24, N23, M24, M23, L23, L24, K24, K23, K22, J24, J23, H24, E26, E25, E24, D26, D25, D24, C26, C25, C24, C23, C22, C21, B22, B21, A22, A21, D20, D19, D18, C18, D17, C17, D16, C16, D15, C15, D14, C14, C13, D13, D12, C12 AE24 Name LSTo0 - 63 Description
MT90868
Local Serial Output Streams 0 to 63 (5V Tolerant Three-state Outputs): These outputs have data rates of 8.192 Mb/s with 128 channels per stream.
C16o
Local C16o Clock (3.3V Three-state Output): A 16.384MHz clock output. The clock falling edge is aligned with the local frame boundary. Local C8o Clock (3.3V Three-state Output): A 8.192MHz clock output. The clock falling edge is aligned with the local frame boundary. Local C4o Clock (3.3V Three-state Output): A 4.096MHz clock output. The clock falling edge is aligned with the local frame boundary. Local ST-Bus Frame Pulse Output (3.3V Three-state Output): Local port ST-BUS frame pulse output which is low for 61ns at the frame boundary. Its frequency is 8KHz. Local CT-Bus Frame Pulse Output (3.3V Three-state Output): Local port ST-BUS frame pulse output which is low for 122ns at the frame boundary. Its frequency is 8KHz. Local ST-Bus Frame Pulse Output (3.3V Three-state Output): Local port ST-BUS frame pulse output which is low for 244ns at the frame boundary. Its frequency is 8KHz. Local Tristate Control Streams 0 to 3 (3.3V Three-state Outputs): These pins are used for per-channel external tristate control of the local output streams. The bit rate is 16.384MHz. When RESET pin or ODE pin is low, the LCSTo0 - 3 are driven high. Output Drive Enable (5V Tolerant Input): This is the asynchronously output enable control for the BSTo0 - 63 and LSTo0 - 63 serial outputs. When it is high, the BSTo0 - 63, LSTo0 - 63 and LCSTo0-3 are enabled. When it is low, the BSTo0 - 63 are tristated or driven high, the LSTo0 - 63 are tristated and the LCSTo0 - 3 are driven high.
AE23
C8o
AE22
C4o
AF24
FP16o
AF23
FP8o
AF22
FP4o
AD20- AD23
LCSTo0 - 3
AD7
ODE
Zarlink Semiconductor Inc.
13
MT90868
Pin Description (continued)
PBGA Ball Number AD8 Name BIME Description
Data Sheet
Bit Interleaving Mode Enable (5V Tolerant Input with internal pull down): When BIME and the BMS bit in the control register are both high, the bit interleaving mode is enabled. See Figure 26 for the bit interleaving mode timing diagram. When it is low, the bit interleaving mode is disabled and the BMS bit in the control register selects the 16Mb/s or 32Mb/s mode for the backplane streams.
14
Zarlink Semiconductor Inc.
Data Sheet
1.0 Device Overview
MT90868
The MT90868 can switch up to 32,768 x 8,192 channels while providing a rate conversion capability. It is designed to switch 64 kb/s PCM or N X 64 kb/s data between the backplane and local switching applications. The device maintains frame integrity in data applications and minimum throughput delay for voice application on a per channel basis. The backplane interface can operate at 16.384Mb/s or 32.768Mb/s on ST-BUS and is arranged in 125s wide frames that contain 256 or 512 channels respectively. A built-in rate conversion circuit allows users to interface between backplane and local interfaces which operates at 8.192Mb/s. By using Zarlink's message mode capability, the microprocessor can access input and output time slots on a per channel basis. This feature is useful for transferring control and status information for external circuits or other STBUS devices.
1.1
Functional Description
A Functional Block Diagram of the MT90868 is shown in Figure 1. It is designed to interface ST-BUS serial streams from a backplane source and ST-BUS serial streams from a local source.
1.2
Frame Alignment Timing
In the ST-BUS mode, the C8i pin accepts a 8.192MHz clock for the frame pulse alignment. The FP8i is a 8kHz frame pulse signal which goes low at the frame boundary for 122ns. The frame boundary is defined by the falling edge of the C8i clock during the low cycle of the frame pulse. Figure 3 shows the backplane port timing diagram with the data rate of 16Mb/s and 32Mb/s. The BFP8C bit in the block programming mode register (BPR) allows the device to accept different frame pulse formats. If the BFP8C bit in the block programming register is low, the device accepts a negative frame pulse. If the BFP8C bit is high, the device accepts a positive frame pulse as described in Figure 3. The device accepts the backplane frame pulse input and generates the local frame pulse outputs. When the 16Mb/s or 32 Mb/s mode is selected for the backplane port, the delay between the backplane and local frame pulse signals is two 16Mb/s or 32Mb/s backplane channels plus 10 cycles of C8i respectively. Figures 4 and 5 show the backplane and local frame pulse alignment for the 16Mb/s and the 32Mb/s timing mode respectively.
1.3
Local Interface Output Timing
The local frame pulses, FP4o, FP8o and FP16o are 8kHz output signals that have a pulse width of 244ns, 122ns and 61ns respectively at the frame boundary. The frame boundary is defined by the falling edge of the C8o output clock during the low cycle of the frame pulse FP8o. At the frame boundary, the falling edges of the C4o and C16o output clocks are aligned with the falling edge of the C8o output clock. In addition, the C8o clock can be inverted by programming the C8C bit to high in the BPR register. When the LFP4C, LFP8C and LFP16C bits are programmed to high in the BPR register, the device will provide positive frame pulse for the FP4o, FP8o and FP16o outputs. The local port timing diagram is shown in Figure 6.
Zarlink Semiconductor Inc.
15
MT90868
FP8i (8kHz) BFP8C = 0 FP8i BFP8C = 1 C8i (8.192MHz)
Channel 0 Channel 255 2 1 0 6 5 4 3 2 1
Data Sheet
.
BSTi/BSTo0-63 (16Mb/s) BSTi/BSTo0-63 (32Mb/s)
1
0
7
6
5
4
3
0
7
Channel 0
Channel 1
Channel 510
Channel 511
32107654321076543210
65432107654321076
Figure 3 - Backplane Port Timing Diagram for 16Mb/s and 32Mb/s modes
Two (16Mb/s) channels + Ten C8i Cycles
FP8i C8i BSTi/BSTo0-633 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 (16Mb/s) FP8o C8o LSTi/LSTo0-63 (8Mb/s)
Channel 125 2 1 0 7 6 5 Channel 126 4 3 2 1 0 7 6 5 Channel 127 4 3 2 1 0 Ch0 7 Ch255 Channel 0 Channel 1 Channel 2 Channel 3 Channel 4
Figure 4 - Backplane and Local Frame Pulse Alignment, Backplane Data Rate is 16Mb/s
Two (32Mb/s) channels + Ten C8i Cycles
FP8i C8i BSTi/BSTo0-63 (32Mb/s) FP8o C8o LSTi/LSTo0-63 (8Mb/s)
Channel 126 6 5 4 3 2 1 0 7 6 Channel 127 5 4 3 2 1 0 7 6 Channel 0 5 4 3 Ch 511 Ch 0 Ch 1 Ch 2 Ch 3 Ch 4 Ch 5 Ch 6 Ch 7 Ch 8 1
Figure 5 - Backplane and Local Frame Pulse Alignment, Backplane Date Rate is 32Mb/s
16
Zarlink Semiconductor Inc.
Data Sheet
FP4o (8kHz) LFP4C = 0 FP4o LFP4C = 1 C4o (4.096MHz)
MT90868
FP8o LFP8C = 0 FP8o LFP8C = 1 C8o (8.192MHz) C8C=0 C8o (8.192MHz) C8C=1 FP16o LFP16C = 0 FP16o LFP16C = 1 C16o (16.384MHz)
Channel 0 Channel 1 Channel 126 Channel 127
LSTi/LSTo0-63 (8Mb/s)
32107654321076543210
65432107654321076
Figure 6 - Local Port Timing Diagram
Zarlink Semiconductor Inc.
17
MT90868
2.0 Switching Configuration
Data Sheet
The MT90868 has two operation modes at different data rates for the backplane interface and one operation mode for the local interface. The two operation modes for the backplane interface can be selected via the backplane mode selection bit (BMS) in the Control Register (CR).
2.1
Backplane Interface
The backplane interface can be programmed to accept data streams of 16Mb/s or 32Mb/s. When BMS bit of the CR register is low, the 16Mb/s mode is enabled, BSTi0-63 and BSTo0-63 have a data rate of 16.384Mb/s. When BMS = 1, the 32Mb/s mode is enabled, BSTi0-63 and BSTo0-63 have a data rate of 32.768Mb/s. Table 1 describes the data rates and mode selections for the backplane interface.
2.2
Local Interface
The local interface has one mode of operation which can only operate at the data rate of 8.192Mb/s.
2.3
Output Bit Advancement Selection
The device allows users to advance individual backplane or local output streams with respect to the frame boundary. This feature is useful in compensating variable output delays caused by various output loading conditions. Each output stream can have its own advancement value programmed by the output advancement registers. The backplane output advancement registers (BOAR0 to BOAR7) are used to program the backplane output advancement. The local output advancement registers (LOAR0 to LOAR7) are used to program the local output advancement. See Tables 17 and Table 19 for the descriptions of the LOAR and BOAR registers. Possible adjustment for local is -1/8, -1/4 or -3/8 bit and the resolution is 1/8 bit (or 1/8 of C8o cycle). For backplane, the possible adjustment is -1/4, -1/2 or -3/4 bit when the output data rate is 16.384Mb/s. When the backplane data rate is 32.768Mb/s, the possible adjustment is -1/2, -1 or -1 1/2 bit. For both data rates, the resolution is 1/8 of C8i cycle. The advancement is independent of the output data rate. Figures 7, 8 and 9 describe the details of the output advancement programming for the local and the backplane interfaces respectively.
2.4
Input Bit Delay Selection
The MT90868 input bit delay features allow users to have more flexibility when designing the switch matrices at high speed, in which the delay lines are easily created on PCM highways which are connected to the switch matrix cards. Each input data stream can have its own input bit delay value programmed by the input delay registers. The local input delay registers (LIDR0 - LIDR21) are used to program the local input delay. The backplane input delay registers (BIDR0 - BIDR21) are used to program the backplane input delay. See Tables 8, 12 and Tables 14, 15 for the descriptions of the LIDR and BIDR registers.
BMS bit of the Control Register 0 1
Modes 16.384Mb/s 32.768Mb/s
Backplane Interface BSTi0 - 63 and BSTo0 - 63 BSTi0 - 63 and BSTo0 - 63
Table 1 - Mode Selection for Backplane Streams
18
Zarlink Semiconductor Inc.
Data Sheet
FP8o C8o
Ch127 Ch0 Bit 0 Bit Advancement, -1/8 Ch127 Bit 1 Bit 0 Bit Advancement, -1/4 Ch127 Bit 7 Bit 7 Bit 6
MT90868
LSToX Bit Advancement = 0 (Default) LSToX
Bit 1
Ch0 Bit 6
Bit Advancement = -1/8
LSToX
Ch0 Bit 7 Bit 6
Bit 1
Bit 0 Bit Advancement, -3/8 Ch127
Bit Advancement = -1/4
Ch0 Bit 7 Bit 6
LSToX Bit Advancement = -3/8
Bit 1
Bit 0
Figure 7 - Local Output Advancement Timing Diagram when the Data Rate is 8Mb/s Possible adjustment of the local input data streams, LSTi0 - LSTi63 is up to 7 3/4 bits. The resolution is 1/4 bit or 1/4 C8o cycle. For backplane, the possible adjustment of the input data streams, BSTi0 - BSTi63 is up to 7 3/4 bits with a resolution of 1/4 bit (or 1/8 C8i clock cycle) when the input data rate is 16.384Mb/s. When the input data rate is 32.768Mb/s, the possible adjustment is up to 7 1/2 bits with a resolution of 1/2 bit (or 1/8 C8i clock cycle). Figures 10, 11 and 12 describe the details of the input bit delay programming for the local and the backplane interfaces respectively.
FP8i C8i BSToX (16.384Mb/s) Bit advancement = 0 (Default) BSToX Bit Advancement = -1/4
Ch255 Bit 2 Bit 1 Bit 0 Bit 7 Bit 6 Ch0 Bit 5 Bit 4
Bit Advancement, -1/4 Ch255 Bit 2 Bit 1 Bit 0 Bit 7 Bit 6
Ch0 Bit 5 Bit 4
Bit Advancement, -1/2 Ch255
Ch0 Bit 7 Bit 6 Bit 5 Bit 4
BSToX Bit Advancement = -1/2
Bit 2
Bit 1
Bit 0
Bit Advancement, -3/4 Ch255
Ch0 Bit 7 Bit 6 Bit 5 Bit 4
BSToX Bit Advancement = -3/4
Bit 2
Bit 1
Bit 0
Figure 8 - Backplane Output Advancement Timing Diagram when the Data Rate is 16Mb/s
Zarlink Semiconductor Inc.
19
MT90868
Data Sheet
FP8i C8i BSToX (32.768Mb/s) Bit Advancement = 0 (Default) BSToX Bit Advancement = -1/2
Ch511 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Bit 7 Bit 6 Bit 5 Ch0 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Bit Advancement, -1/2 Ch511 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Bit 7 Bit 6 Bit 5
Ch0 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Bit Advancement, -1 Ch511
Ch0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
BSToX Bit Advancement = -1
Bit 5
Bit 4 Bit 3
Bit 2
Bit 1
Bit 0
Bit Advancement, -1 1/2 Ch511
Ch0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
BSToX Bit Advancement = -1 1/2
Bit 5
Bit 4 Bit 3
Bit 2
Bit 1
Bit 0
Figure 9 - Backplane Output Advancement Timing Diagram when the Data Rate is 32Mb/s
FP8o C8o
Ch127 Ch0 1 0 7 6 5 4 3 2 1 0 7 6 Ch1 5 4
LSTiX Bit Delay = 0 (Default) LSTiX Bit Delay = 1/4
3
2
Bit Delay, 1/4 Ch127 3 2 1 0 7 6 5 Ch0 4 3 2 1 0 7 6 Ch1 5 4
Bit Delay, 1/2
LSTiX Bit Delay = 1/2
Ch127 3 2 1 0 7 6 5
Ch0 4 3 2 1 0 7 6
Ch1 5 4
Bit Delay, 3/4
LSTiX Bit Delay = 3/4
Ch127 3 2 1 0 7 6 Bit Delay, 1 Ch127 5
Ch0 4 3 2 1 0 7 6
Ch1 5 4
Ch0 2 1 0 7 6 5 4 3 2 1 0 7 6
Ch1 5
LSTiX Bit Delay = 1
3
LSTiX Bit Delay = 7 1/2
Ch126 2 1 0 7 6 5
Ch127 4 3 2 1 0 7
Bit Delay, 7 1/2 Ch0 6 5 4
LSTiX Bit Delay = 7 3/4
Ch126 2 1 0 7 6 5
Ch127 4 3 2 1 0 7
Bit Delay, 7 3/4 Ch0 6 5 4
Figure 10 - Local Input Bit Delay Timing Diagram (The Data Rate is 8Mb/s)
20
Zarlink Semiconductor Inc.
Data Sheet
MT90868
FP8i (8kHz) C8i (8.192MHz) BSTiX (16Mb/s) Bit Delay = 0 Default
1 0 7 6 5 4
Ch 0 3 2 1 0 7 6 5
Ch1 4 3 2 1 0 7
Bit Delay, 1/2 Ch0 Ch1 2 1 0 7 6 5 4 3 2 1 0 7 0 7 6 5 4 3
BSTiX Bit Delay = 1/2
1
Bit Delay, 2
Ch0 4 3 2 1 0 7 6 5
Ch1 4 3 2 1
BSTiX Bit Delay = 2
3
2
1
0
7
6
5
Figure 11 - Backplane Input Bit Delay Timing Diagram when the Data Rate is 16Mb/s
FP8i (8kHz) C8i (8.192MHz)
Ch0 Ch1 Ch2 Ch3
BSTiX (32Mb/s) Bit Delay = 0 Default BSTiX Bit Delay = 1/2
321076543210765432107654321076543210 Bit Delay, 1/2 Ch0
Ch1
Ch2
Ch3
321076543210765432107654321076543210 Bit Delay, 1 Ch0
BSTiX Bit Delay = 1
Ch1
Ch2
Ch3
4321076543210 765432107 6543210 7654321
Figure 12 - Backplane Input Bit Delay Timing Diagram when the Data Rate is 32Mb/s
2.5
Local Input Channel Delay and Local Channel Output Advancement
The MT90868 provides users with the capability of programming the local input channel delay and the local output channel advancement. The local input channel delay programming allows all local input streams to have a different frame boundary with respect to the local frame pulse (F8o). It is enabled when the LICDEN bit in the control register (CR) is high. The local input channel delay registers (LICDR0 - LICDR31) allows the users to delay the input channel from 0 to 127 channel for every local input stream. Figure 13 describes the local channel delay timing with different delay values. The local output channel advancement programming allows all local output streams to have a different frame boundary with respect to the local frame pulse (F8o). It is enabled when the LOCAEN bit in the CR register is set to high. The local output channel advancement registers (LOCAR0 - LOCAR31) allows the users to advance the output channel from 0 to 127 channels for every local output stream. Figure 14 describes the local channel output advancement timing with different channel advancement values.
Zarlink Semiconductor Inc.
21
MT90868
FP8o C8o
Ch 0 Ch 1 Ch126 Ch127
Data Sheet
LSTiX Channel Delay = 0 (Default)
32107654321076543210 Delay = 1 Ch127
65432107654321076
Ch 0
Ch125
Ch126
LSTiX Channel Delay = 1
32107654321076543210
65432107654321076
Ch126
Delay = 2 Ch127
Ch0
Ch125 7654321076
LSTiX Channel Delay = 2 Note: X = 0 to 63
3210765432107654321076543210
Figure 13 - Local Input Channel Delay Timing Diagram
FP8o C8o
Ch 0 Ch 1 Ch126 Ch127
LSToY Channel Advance =0 (Default)
32107654321076543210
65432107654321076 Advance = 1 Ch0
Ch1
Ch2
Ch127
LSToY Channel Advance = 1
32107654321076543210
65432107654321076
Ch2
Ch3
Ch0
Advance = 2
Ch1
LSToY Channel Advance = 2
32107654321076543210
76543210 7654321076
Note:
Y = 0 to 63
Figure 14 - Local Output Channel Advancement Timing Diagram
2.6
Memory Block Programming
The block programming register (BPR) provides users with the capability of initializing the local and backplane connection memories in two frames. The local connection memory is partitioned into local connection memory high (LCMH) and the local connection memory low (LCML). Bit 13 - bit 15 of every backplane connection memory location will be programmed with the pattern stored in bit 4 - bit 6 of the BPR register. Bit 15 of every LCML location and bit 0 - bit 1 of every LCMH location will be programmed with the pattern stored in bits 1 to 3 of the BPR register. The other bit positions of the backplane connection memory, the local connection memory low and all bits of the local connection memory high are loaded with zeros. See Figure 15 for the connection memory contents when the device is in the block programming mode. The block programming mode is enabled by setting the memory block program (MBP) bit of the control register to
22 Zarlink Semiconductor Inc.
Data Sheet
MT90868
high. When the block programming enable (BPE) bit of the BPR register is set to high, the block programming data will be loaded into bits 13 to 15 of every backplane connection memory location and bits 15 of every local connection memory low and bit 0 to bit 1 of every local connection memory high location. The other connection memory bits are loaded with zeros. It takes two frames (250s) to allow the backplane and local connection memories to be loaded. Upon the completion of the memory block programming, the device resets the BPE bit to low to indicating that the process is finished. See Table 6 for the bit assignment of the BPR register.
15
BBPD2
14
BBPD1
13
BBPD0
12
0
11
0
10
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Backplane Connection Memory (BCM)
15
LBPD0
14
0
13
0
12
0
11
0
10
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Local Connection Memory Low (LCML) 15
0
14
0
13
0
12
0
11
0
10
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
LBPD2
0
LBPD1
Local Connection Memory High (LCMH)
Figure 15 - Block Programming Data in the Connection Memories
Zarlink Semiconductor Inc.
23
MT90868
3.0 Switching Paths
Data Sheet
The MT90868 provides users with four switching paths, namely "backplane-to-local", "local-to-backplane", "backplane-to-backplane" and "local-to-local". The switching configuration is controlled by programming the local connection and the backplane connection memories. The "backplane-to-local" switching path allows the device to perform data switching between the backplane input port and the local output port among 32,768 backplane input channels and 8,192 local output channels. The local connection memory determines the switching configurations. See Table 30 and Table 31 for the details. The "local-to-backplane" switching path allows users to perform data switching between the local input port and the backplane output port among 8,192 local input channels and 16,380 or 32,760 backplane output channels when operated in the 16Mb/s or 32Mb/s mode respectively. The last channel (Ch255 or Ch511) of the backplane output streams BSTo60 to BSTo63 or BSTo58 to BSTo63 contains invalid output data for the 16Mb/s or 32Mb/s mode respectively. Avoid using the last channel of these streams for the "local-to-backplane" data switching. The backplane connection memory determines the switching configurations. See Table 32 for the details. The "local-to-local" switching path allows users to perform data switching between the local input and the local output ports among 8,192 local input and 8,192 local output ports. The local connection memory determines the switching configurations. See Table 30 and Table 31 for the details. The "backplane-to-backplane" switching path allows users to perform data switching between the backplane input and the backplane output ports. In this switching mode, only two backplane input streams can be selected by the backplane data input selection register (BDISR). The switching capacity is 512 x 512 or 1,024 x 1,024 backplane channels for the 16Mb/s or 32Mb/s mode respectively. The BDISR register selects two backplane input data streams, namely, Stream A and Stream B to support the "backplane-to-backplane" switching. The backplane connection memory determines the switching configurations. See Table 33 for the details.
3.1
Throughput Delay
The usage of the local input channel delay buffer and the local output channel advancement buffer affects the data throughput delay for the four data switching paths. The usage of these two buffers is controlled by the LICDEN and the LOCAEN bits in the control register (CR). When LICDEN and LOCAEN bits are low, the "backplane-to-local" switching path has a throughput delay of one frame plus 2 channel slots; the "local-to-backplane", the "backplaneto-backplane" and the "local-to-local" switching paths have the throughput delay of two frames. Data Delay Switching Path
Input Buffer** OFF Output Buffer** OFF (LICDEN = 0) (LOCAEN = 0) Input Buffer ON Output Buffer OFF (LICDEN = 1) (LOCAEN = 0) Input Buffer OFF Output Buffer ON (LICDEN = 0) (LOCAEN = 1) Input Buffer ON Output Buffer ON (LICDEN = 1) (LOCAEN = 1)
Local-to-Backplane Local-to-Local Backplane-to-Local Backplane-to-backplane
2 Frames 2 Frames 1 Frame + 2 Ch 2 Frames
3 Frames 3 Frames 1 Frame + 2 Ch 2 Frames
2 Frames 3 Frames 2 Frames + 2 Ch 2 Frames
3 Frames 4 Frames 2 Frames + 2 Ch 2 Frames
** Note: Input Buffer = Local input channel delay buffer Output Buffer = Local output channel advancement buffer.
Table 2 - Data Delay Through the Device via Different Switching Paths
24
Zarlink Semiconductor Inc.
Data Sheet
MT90868
When the local input data streams pass through the local input channel delay buffer to perform the input channel adjustment by setting the LICDEN bit to high, the device will add one more frame data to the "local-to-backplane" and the "local-to-local" data switching paths. When the local output data streams pass through the local output channel advancement buffer to perform the output channel adjustment by setting the LOCAEN bit to high, the device will add one more frame data delay to the "backplane-to-local" and the "local-to-local" switching paths. Table 2 describes the different delay throughput for the various data switching paths.
4.0
Microprocessor Interface
The MT90868 provides a microprocessor port interface for non-multiplexed bus structures. This interface is compatible to Motorola non-multiplexed bus structure specification. The required microprocessor signals are the 16-bit parallel data bus (D15 - D0), 16-bit address bus (A15 - A0) and four control lines (CS, DS, R/W and DTA). See Figure 23 for details on the Motorola non-multiplexed bus timing. The MT90868 synchronous microprocessor port provides access to the internal registers, the connection and the data memories. All memory mapping locations are read/write accessible except the local and backplane bit error rate count registers (LBCR and BBCR) and data memories which can only be read by the users.
4.1
Address Mapping of Registers and Memories
The address bus of the microprocessor port interface selects the internal registers and the memories. If the address bit, A15 is low, then the registers are addressed by A14 to A0 as shown in Table 3. If A15 is high, the remaining address input lines are used to select the data and connection memory positions corresponding to the serial input or output data streams as shown in Table 4.
Zarlink Semiconductor Inc.
25
MT90868
A15-A0 0000H 0001H 0002H 0003H 0004H 0005H 0006H 0007H 0008H 0009H 000AH 000BH 000CH 000DH 000EH 000FH 0010H 0011H 0012H 0013H 0014H 0015H 0016H 0017H 0018H 0019H Internal Register Control Register, CR Block Programming Register, BPR Local Input Channel Delay Register 0, LICDR0 Local Input Channel Delay Register 1, LICDR1 Local Input Channel Delay Register 2, LICDR2 Local Input Channel Delay Register 3, LICDR3 Local Input Channel Delay Register 4, LICDR4 Local Input Channel Delay Register 5, LICDR5 Local Input Channel Delay Register 6, LICDR6 Local Input Channel Delay Register 7, LICDR7 Local Input Channel Delay Register 8, LICDR8 Local Input Channel Delay Register 9, LICDR9 Local Input Channel Delay Register 10, LICDR10 Local Input Channel Delay Register 11, LICDR11 Local Input Channel Delay Register 12, LICDR12 Local Input Channel Delay Register 13, LICDR13 Local Input Channel Delay Register 14, LICDR14 Local Input Channel Delay Register 15, LICDR15 Local Input Channel Delay Register 16, LICDR16 Local Input Channel Delay Register 17, LICDR17 Local Input Channel Delay Register 18, LICDR18 Local Input Channel Delay Register 19, LICDR19 Local Input Channel Delay Register 20, LICDR20 Local Input Channel Delay Register 21, LICDR21 Local Input Channel Delay Register 22, LICDR22 Local Input Channel Delay Register 23, LICDR23
Data Sheet
Table 3 - Address Map for Internal Registers, when A15 = 0
26
Zarlink Semiconductor Inc.
Data Sheet
A15-A0 001AH 001BH 001CH 001DH 001EH 001FH 0020H 0021H 0022H 0023H 0024H 0025H 0026H 0027H 0028H 0029H 002AH 002BH 002CH 002DH 002EH 002FH 0030H 0031H 0032H 0033H Internal Register Local Input Channel Delay Register 24, LICDR24 Local Input Channel Delay Register 25, LICDR25 Local Input Channel Delay Register 26, LICDR26 Local Input Channel Delay Register 27, LICDR27 Local Input Channel Delay Register 28, LICDR28 Local Input Channel Delay Register 29, LICDR29 Local Input Channel Delay Register 30, LICDR30 Local Input Channel Delay Register 31, LICDR31 Local Output Channel Advancement Register 0, LOCAR0 Local Output Channel Advancement Register 1, LOCAR1 Local Output Channel Advancement Register 2, LOCAR2 Local Output Channel Advancement Register 3, LOCAR3 Local Output Channel Advancement Register 4, LOCAR4 Local Output Channel Advancement Register 5, LOCAR5 Local Output Channel Advancement Register 6, LOCAR6 Local Output Channel Advancement Register 7, LOCAR7 Local Output Channel Advancement Register 8, LOCAR8 Local Output Channel Advancement Register 9, LOCAR9 Local Output Channel Advancement Register 10, LOCAR10 Local Output Channel Advancement Register 11, LOCAR11 Local Output Channel Advancement Register 12, LOCAR12 Local Output Channel Advancement Register 13, LOCAR13 Local Output Channel Advancement Register 14, LOCAR14 Local Output Channel Advancement Register 15, LOCAR15 Local Output Channel Advancement Register 16, LOCAR16 Local Output Channel Advancement Register 17, LOCAR17 A15-A0 0034H 0035H 0036H 0037H 0038H 0039H 003AH 003BH 003CH 003DH 003EH 003FH 0040H 0041H 0042H 0043H 0044H 0045H 0046H 0047H 0048H 0049H 004AH 004BH 004CH 004DH Internal Register Local Output Channel Advancement Register 18, LOCAR18 Local Output Channel Advancement Register 19, LOCAR19 Local Output Channel Advancement Register 20, LOCAR20 Local Output Channel Advancement Register 21, LOCAR21 Local Output Channel Advancement Register 22, LOCAR22 Local Output Channel Advancement Register 23, LOCAR23 Local Output Channel Advancement Register 24, LOCAR24 Local Output Channel Advancement Register 25, LOCAR25 Local Output Channel Advancement Register 26, LOCAR26 Local Output Channel Advancement Register 27, LOCAR27 Local Output Channel Advancement Register 28, LOCAR28 Local Output Channel Advancement Register 29, LOCAR29 Local Output Channel Advancement Register 30, LOCAR30 Local Output Channel Advancement Register 31, LOCAR31 Local Input Bit Delay Register 0, LIDR0 Local Input Bit Delay Register 1, LIDR1 Local Input Bit Delay Register 2, LIDR2 Local Input Bit Delay Register 3, LIDR3 Local Input Bit Delay Register 4, LIDR4 Local Input Bit Delay Register 5, LIDR5 Local Input Bit Delay Register 6, LIDR6 Local Input Bit Delay Register 7, LIDR7 Local Input Bit Delay Register 8, LIDR8 Local Input Bit Delay Register 9, LIDR9 Local Input Bit Delay Register 10, LIDR10 Local Input Bit Delay Register 11, LIDR11 A15-A0 004EH 004FH 0050H 0051H 0052H 0053H 0054H 0055H 0056H 0057H 0058H 0059H 005AH 005BH 005CH 005DH 005EH 005FH 0060H 0061H 0062H 0063H 0064H 0065H 0066H 0067H
MT90868
Internal Register Local Input Bit Delay Register 12, LIDR12 Local Input Bit Delay Register 13, LIDR13 Local Input Bit Delay Register 14, LIDR14 Local Input Bit Delay Register 15, LIDR15 Local Input Bit Delay Register 16, LIDR16 Local Input Bit Delay Register 17, LIDR17 Local Input Bit Delay Register 18, LIDR18 Local Input Bit Delay Register 19, LIDR19 Local Input Bit Delay Register 20, LIDR20 Local Input Bit Delay Register 21, LIDR21 Backplane Input Bit Delay Register 0, BIDR0 Backplane Input Bit Delay Register 1, BIDR1 Backplane Input Bit Delay Register 2, BIDR2 Backplane Input Bit Delay Register 3, BIDR3 Backplane Input Bit Delay Register 4, BIDR4 Backplane Input Bit Delay Register 5, BIDR5 Backplane Input Bit Delay Register 6, BIDR6 Backplane Input Bit Delay Register 7, BIDR7 Backplane Input Bit Delay Register 8, BIDR8 Backplane Input Bit Delay Register 9, BIDR9 Backplane Input Bit Delay Register 10, BIDR10 Backplane Input Bit Delay Register 11, BIDR11 Backplane Input Bit Delay Register 12, BIDR12 Backplane Input Bit Delay Register 13, BIDR13 Backplane Input Bit Delay Register 14, BIDR14 Backplane Input Bit Delay Register 15, BIDR15
Table 3 - Address Map for Internal Registers, when A15 = 0 (continued)
Table 3 - Address Map for Internal Registers, when A15 = 0 (continued)
Table 3 - Address Map for Internal Registers, when A15 = 0 (continued)
Zarlink Semiconductor Inc.
27
MT90868
A15-A0 0068H 0069H 006AH 006BH 006CH 006DH 006EH 006FH 0070H 0071H 0072H 0073H 0074H 0075H 0076H 0077H 0078H 0079H 007AH 007BH 007CH 007DH 007EH 007FH 0080H 0081H Internal Register Backplane Input Bit Delay Register 16, BIDR16 Backplane Input Bit Delay Register 17, BIDR17 Backplane Input Bit Delay Register 18, BIDR18 Backplane Input Bit Delay Register 19, BIDR19 Backplane Input Bit Delay Register 20, BIDR20 Backplane Input Bit Delay Register 21, BIDR21 Local Output Advancement Register 0, LOAR0 Local Output Advancement Register 1, LOAR1 Local Output Advancement Register 2, LOAR2 Local Output Advancement Register 3, LOAR3 Local Output Advancement Register 4, LOAR4 Local Output Advancement Register 5, LOAR5 Local Output Advancement Register 6, LOAR6 Local Output Advancement Register 7, LOAR7 Backplane Output Advancement Register 0, BOAR0 Backplane Output Advancement Register 1, BOAR1 Backplane Output Advancement Register 2, BOAR2 Backplane Output Advancement Register 3, BOAR3 Backplane Output Advancement Register 4, BOAR4 Backplane Output Advancement Register 5, BOAR5 Backplane Output Advancement Register 6, BOAR6 Backplane Output Advancement Register 7, BOAR7 Backplane Data Input Selection Register, BDISR Backplane Data Memory Read Selection Register, BDMRSR Local Data Memory Read Selection Register, LDMRSR Local BER Start Receive Register, LBSRR A15-A0 0082H 0083H 0084H 0085H 0086H 0087H 7FFFH Internal Register Local BER Length Register, LBLR Local BER Count Register, LBCR Backplane BER Start Receive Register, BBSRR Backplane BER Length Register, BBLR Backplane BER Count Register, BBCR Reserved Reserved
Data Sheet
Table 3 - Address Map for Internal Registers, when A15 = 0 (continued)
Table 3 - Address Map for Internal Registers, when A15 = 0 (continued)
28
Zarlink Semiconductor Inc.
Data Sheet
MT90868
The Control Register (CR) and the Block Programming Register (BPR) control all the major functions of the device. The Control Register (CR) and the Block Programming Register (BPR) should be programmed immediately after system power up to establish the desired switching configuration as explained in the Frame Alignment Timing and the Switching Configurations sections. The Control Register is used to select Data or Connection Memory for microport operations through the memory select bits. The register also enables the local input channel delay, the output channel advancement, the backplane per-channel output tristate or per-channel driven-high control selection, the memory block programming mode and the BER test. The Block Programming Register consists of the block programming data bits (LPBD2 - LPBD0, BBPD2 - BBPD0) and the block programming enable bit (BPE). The BPE bit allows users to program the entire backplane and local connection memories. See Memory Block Programming section. The BPR register also controls the local and the backplane frame pulse polarities.
Stream Address (Stream 0 - 63) A15 (Note 1) A 14 0 0 0 0 . . . . . . 0 0 0 1 1 1 1 1 . . . . . . 1 1 1 1 A 13 0 0 0 0 . . . . . . 1 1 1 0 0 0 0 0 . . . . . . 1 1 1 1 A 12 0 0 0 0 . . . . . . 1 1 1 0 0 0 0 0 . . . . . . 1 1 1 1 A 11 0 0 0 0 . . . . . . 1 1 1 0 0 0 0 1 . . . . . . 1 1 1 1 A 10 0 0 1 1 . . . . . . 0 1 1 0 0 1 1 0 . . . . . . 0 0 1 1 A 9 0 1 0 1 . . . . . . 1 0 1 0 1 0 1 0 . . . . . . 0 1 0 1 Stream # Stream 0, C or E (Note 5) Stream 1, D or F (Note 5) Stream 2 Stream 3 . . . . . . . Stream 29 Stream 30 Stream 31 Stream 32 Stream 33 Stream 34 Stream 35 Stream 36 . . . . . . Stream 60 Stream 61 Stream 62 Stream 63 A 8 0 0 0 0 . . . 0 0 0 0 0 0 0 0 . . . 0 0 0 0 1 1 . . . 1 1 A 7 0 0 0 0 . . . 0 0 0 0 1 1 1 1 . . . 1 1 1 1 0 0 . . . 1 1 A 6 0 0 0 0 . . . 1 1 1 1 0 0 0 0 . . . 1 0 1 1 0 0 . . . 1 1 Channel Address (Channel 0 - 511) A 5 0 0 0 0 . . . 1 1 1 1 0 0 0 0 . . . 1 1 1 1 0 0 . . . 1 1 A 4 0 0 0 0 . . . 1 1 1 1 0 0 0 0 . . . 1 1 1 1 0 0 . . . 1 1 A 3 0 0 0 0 . . . 1 1 1 1 0 0 0 0 . . . 1 1 1 1 0 0 . . . 1 1 A 2 0 0 0 0 . . . 1 1 1 1 0 0 0 0 . . . 1 1 1 1 0 0 . . . 1 1 A 1 0 0 1 1 . . . 0 0 1 1 0 0 1 1 . . . 0 0 1 1 0 0 . . . 1 1 A 0 0 1 0 1 . . . 0 1 0 1 0 1 0 1 . . . 0 1 0 1 0 1 . . . 0 1 Channel # Ch 0 Ch 1 Ch 2 Ch 3 . . . Ch 124 Ch 125 Ch 126 Ch 127 (Note 2) Ch 128 Ch 129 Ch 130 Ch 131 . . . Ch 252 Ch 253 Ch 254 Ch 255 (Note 3) Ch 256 Ch 257 . . . Ch 510 Ch 511 (Note 4)
1 1 1 1 . . . . . . . 1 1 1 1 1 1 1 1 . . . . . . 1 1 1 1
Notes: 1. Bit A15 must be high to access the data memory and connection memory positions. (A15 must be low to access registers.) 2. Channels 0 to 127 are used when serial stream is at 8.192Mb/s. 3. Channels 0 to 255 are used when serial stream is at 16.384Mb/s. 4. Channels 0 to 511 are used when serial stream is at 32.768Mb/s. 5. Stream C&D or Stream E&F are selected by the backplane data memory read selection register (BDMRSR) or the local data memory read selection register (LDMRSR) respectively. These streams are selected to support the microprocessor port data memory read operation.
Table 4 - Address Map for Memory Locations, when A15 = 1
4.2
Backplane Connection Memory
The Backplane Connection Memory (BCM) is 16-bit wide. It controls the switching configuration of the backplane interface through the Backplane Source Control (BSRC) bit. When this bit is low, the input source is from the local input port and the "local-to-backplane" switching paths can be configured. When this bit is high, the input source is from the backplane input port and the "backplane-to-backplane" switching paths can be configured. Locations in the backplane connection memory are associated with particular BSTo streams. The BTM1 - BTM0 bits of each backplane connection memory determine the per-channel tristate (or driven-high)
29
Zarlink Semiconductor Inc.
MT90868
control and the per-channel message and the normal modes.
Data Sheet
In the switching mode, the contents of the backplane connection memory stream address bits (BSAB0 - BSAB5) and channel address bits (BCAB0 - BCAB6) define the source information (stream and channel) of the time slot that will be switched to the backplane BSTo streams. During the message mode, only the lower 8 least significant bits of the backplane connection memory will be transferred to the BSTo pins.
4.3
Local Connection Memory
The local connection memory controls the local interface switching configurations through the Local Mode Selection Control (LMSC) bit. When this bit is low, the input source is from the backplane input port and the "backplane-tolocal" switching path can be configured. When it is high, the input source is from the local input port and the "localto-local" switching path can be configured. The local connection memory consists of two parts, namely, the Local Connection memory Low (LCML) and the Local Connection Memory High (LCMH). Each of them is 16-bit wide. Locations in the local connection memory are associated with particular LSTo output streams. The LTM1 - LTM0 bits of each Local Connection Memory High (LCMH) determine the per-channel message mode, the pre-channel tristate and the normal modes. In the switching mode, the stream address bits (LSAB0 - LSAB5) and channel address bits (LCAB0 - LCAB8) of the local connection memory low (LCML) define the source information (stream and channel) of the time slot that will be switched to the local LSTo streams. During the message mode, only the lower 8 least significant bits of the Local Connection Memory Low are transferred to the LSTo pins.
4.4
Data Memory Read Operation
All connection memory content can be read from the microprocessor port. However, only limited data memory contents can be read from the micro- processor port at any one time. The backplane data memory has 1,024 locations and the local data memory has 256 locations to support the data memory reads. The Backplane Data Memory Read Selection register (BDMRSR) selects the two backplane input streams which will be read (or monitored) from the microprocessor port. The selected backplane input streams are labelled as Stream C and Stream D. The Local Data Memory Read Selection register (LDMRSR) selects the two local input streams which will be read (or monitored) from the microprocessor port. The selected backplane input streams are labelled as Stream E and Stream F. Users need to program the BDMRSR and LDMRSR registers before the proper data memory read operations can occur. See Tables 22 and 23 for the description of the memory read selection registers. Also, see Table 4 for the microprocessor addresses required to access Stream C&D or Stream E&F. Refer to the MS0 - 2 bits in the control registers for the selection of the data memory to be read from the microprocessor port.
4.5
Data Transfer Acknowledge
The DTA pin of the microprocessor is driven low by the internal logic to indicate that a data bus transfer cycle is completed. When the bus cycle is ended, the DTA switches to the high impedance state. An external pull-up is required at this output.
4.6
Local External Tristate Control
The MT90868 allows users the flexibility to perform the per-channel tristate operation for the local interface when external drivers or buffers are used for the LSTo0-64 outputs. The device provides four output control signals, LCSTo0 - LCSTo3 which have the data rate of 16.384Mb/s with 8,192 control bits per frame. Each control bit position is corresponding to a specific output stream and channel location as defined in the local connection memory. When the LTM0 and LTM1 bits in the LCMH are programmed to tristate selected local output channels, the corresponding LCSTo control bits will set to high for the selected
30
Zarlink Semiconductor Inc.
Data Sheet
MT90868
tristate output channels. For example, if we program channel 0 of the LSTo4 to be tristated, the control bit LSTo4_Ch0 will set to high. With the local output channel advancement feature disabled, the LCSTo0 output is advanced by nine C8o cycles from the frame boundary to send out the control bit for the channel 0 of the LSTo0 stream. Similarly, the LCSTo1, LCSTo2 and LCSTo3 outputs are advanced by nine C8o cycles for the channel 0 of the LSTo1; LSTo2 and LSTo3 output streams respectively. The advancement in the LCSTo streams allows the external drivers or buffers to process the LCSTo control bits accordingly before the actual LSTo data is output from the device.
FP8o
C8o
Ch127
Ch 0 0 7 6 5 4 3
Ch 126 2 1 0 7 6 5
Ch127 4 3 2 1 0 7
LSTo0
1
Ch127
Ch 0 0 7 6 5 4 3
Ch 126 2 1 0 7 6 5
Ch127 4 3 2 1 0 7
LSTo63
1
Nine C8o cycles LSTo24,Ch127 LSTo28,Ch127 LSTo32,Ch127 LSTo36,Ch127 LSTo40,Ch127 LSTo44,Ch127 LSTo48,Ch127 LSTo52,Ch127 LSTo56,Ch127 LSTo60,Ch127 LSTo0,Ch0 LSTo4,Ch0 LSTo8,Ch0 LSTo12,Ch0 LSTo16,Ch0 LSTo20,Ch0 LSTo24,Ch0 LSTo28,Ch0 LSTo32,Ch0 LSTo36,Ch0 LSTo40,Ch0 LSTo44,Ch0 LSTo48,Ch0 LSTo52,Ch0 LSTo56,Ch0 LSTo60,Ch0 LSTo0,Ch1 LSTo4,Ch1 LSTo8,Ch1 LST12,Ch1 LST16,Ch1
LCSTo0
LSTo56,Ch0 LSTo60,Ch0 LSTo0,Ch1 LSTo4,Ch1 LSTo8,Ch1 LSTo12,Ch1 LSTo16,Ch1 LSTo20,Ch1
LCSTo1
LSTo57,Ch0 LSTo61,Ch0 LSTo1,Ch1 LSTo5,Ch1 LSTo9,Ch1 LSTo13,Ch1 LSTo17,Ch1 LSTo21,Ch1
LCSTo2
LSTo58,Ch0 LSTo62,Ch0 LSTo2,Ch1 LSTo6,Ch1 LSTo10,Ch1 LSTo14,Ch1 LSTo18,Ch1 LSTo22,Ch1
LCSTo3
LSTo59,Ch0 LSTo63,Ch0 LSTo3,Ch1 LSTo7,Ch1 LSTo11,Ch1 LSTo15,Ch1 LSTo19,Ch1 LSTo23,Ch1
Figure 16 - Local External Tristate Control Timing When the local output channel advancement feature is enabled, LCSTo signals for those advanced output channels will also be advanced together with the actual channel outputs. Figure 16 describes the Local External Tristate Control Timing. The ODE and RESET pins also control the LCSTo pins. See Table 5, the OSB bit description in the control register.
4.7
Bit Error Rate Test
The MT90868 offers users the Bit Error Rate (BER) test feature for the backplane and local interfaces. The circuitry of the BER test consists of a transmitter and a receiver on both interfaces which can transmit and receive the BER patterns independently. The transmitter can output pseudo random patterns of the form 215 - 1 which can start anywhere in the frame and last a minimum of one channel and a maximum of one frame time (125s). The BER test mode is activated by setting the LTM1 - LTM0 bits to "11" or the BTM1 - BTM0 bits to "11" in the local and the
LSTo27,Ch127 LSTo31,Ch127 LSTo35,Ch127 LSTo39,Ch127 LSTo43,Ch127 LSTo47,Ch127 LSTo51,Ch127 LSTo55,Ch127 LSTo59,Ch127 LSTo63,Ch127 LSTo3,Ch0 LSTo7,Ch0 LSTo11,Ch0 LSTo15,Ch0 LSTo19,Ch0 LSTo23,Ch0 LSTo27,Ch0 LSTo31,Ch0 LSTo35,Ch0 LSTo39,Ch0 LSTo43,Ch0 LSTo47,Ch0 LSTo51,Ch0 LSTo55,Ch0 LSTo59,Ch0 LSTo63,Ch0 LSTo3,Ch1 LSTo7,Ch1 LSTo11,Ch1 LSTo15,Ch1 LSTo19,Ch1
LSTo26,Ch127 LSTo30,Ch127 LSTo34,Ch127 LSTo38,Ch127 LSTo42,Ch127 LSTo46,Ch127 LSTo50,Ch127 LSTo54,Ch127 LSTo58,Ch127 LSTo62,Ch127 LSTo2,Ch0 LSTo6,Ch0 LSTo10,Ch0 LSTo14,Ch0 LSTo18,Ch0 LSTo22,Ch0 LSTo26,Ch0 LSTo30,Ch0 LSTo34,Ch0 LSTo38,Ch0 LSTo42,Ch0 LSTo46,Ch0 LSTo50,Ch0 LSTo54,Ch0 LSTo58,Ch0 LSTo62,Ch0 LSTo2,Ch1 LSTo6,Ch1 LSTo10,Ch1 LSTo14,Ch1 LSTo18,Ch1
LSTo25,Ch127 LSTo29,Ch127 LSTo33,Ch127 LSTo37,Ch127 LSTo41,Ch127 LSTo45,Ch127 LSTo49,Ch127 LSTo53,Ch127 LSTo57,Ch127 LSTo61,Ch127 LSTo1,Ch0 LSTo5,Ch0 LSTo9,Ch0 LSTo13,Ch0 LSTo17,Ch0 LSTo21,Ch0 LSTo25Ch0 LSTo29,Ch0 LSTo33,Ch0 LSTo37,Ch0 LSTo41,Ch0 LSTo45,Ch0 LSTo49,Ch0 LSTo53,Ch0 LSTo57,Ch0 LSTo61,Ch0 LSTo1,Ch1 LSTo5,Ch1 LSTo9,Ch1 LSTo13,Ch1 LSTo17,Ch1
Zarlink Semiconductor Inc.
31
MT90868
Data Sheet
backplane connection memory respectively and also setting the SBERL bit (for local) or the SBERB bit (for backplane) in the Control Register (CR) to high. For the test, the users can program the BER pattern for multiple consecutive output channels through the connection memory. However, the number of consecutive output channels must be the same as the number of input channels defined in the local and backplane BER length registers (LBLR and BBLR) which define how many BER channels to be monitored by the BER receivers. There are three types of registers to control the BER transmitter and receiver circuits. The BER Start Receive Registers for the local (LBSRR) and the backplane (BBSRR) define the input stream and channel from where the BER sequence will start to compare. The BER Length Registers for the local (LBLR) and the backplane (BBLR) define the number of input channels which the sequence will be last. The BER Count Registers for the local (LBCR) and the backplane (BBCR) contain the number of counted BER errors after the comparison. To prevent overflow, the internal BER counter will stop updating the error count when the error count reaches 0xFFFF. In additional to the BER registers, the CBERL bit and the CBERB bit of the Control Register are used to clear the backplane and the local bit error count registers; the SBERB and SBERL are used to enable the backplane and the local BER transmitters and receivers. See Table 24, 25, 26, 27, 28 and 29 for the detailed descriptions of the BER registers. The BER test should be carried out as follows: Set the SBERB and the SBERL bits to zero to disable the backplane and the local BER transmitters during the programming of the backplane and local connection memories for the BER test; when the BER transmitters are disabled, the transmitter outputs are set to zero, * Set the SBERB and SBERL bit from zero to one to enable the BER transmitters and receivers upon the completion of the programming of the connection memories, * Allow the BER transmitters and receivers to run for at least two frames (or the delay between the serial data output and the serial date input) before the BER receivers can correctly identify errors in the BER pattern but ignore the error counts displayed in the BER count registers during this training period, * After the training period, clear the BER count registers by setting the CBERL and the CBERB bit of the control register from zero to one, * Set the CBERL and CBERB bits from one to zero to release the BER counter; the BER receivers receive the BER sequence and perform the comparison, * Record the bit errors by reading the BER count registers upon the completion of the BER test, * Clear the BER counters by setting the CBERB and CBERL from zero to one upon the completion of the BER test, (Note : The transmitter and receiver for both local and backplane interface can be controlled independently to each other.) *
The bit error rate test mode is available for the shaded channels.
BSTo 0, 2, 4, 6, 8, 10, 12, ... , 56, 58, 60, 62. BSTo 1, 3, 5, 7, 9, 11, 13, ... , 57, 59, 61, 63.
To enable the bit error rate test for the unshaded channels, one of the shaded channels on their right hand side has to be enabled. Example: To enable Ch8 for BER test mode, Ch10 or Ch11 has to be enabled.
Figure 17 - Backplane Output Streams Availability for BER Test at 32Mb/s mode When the backplane port is in the 32Mb/s mode, the bit error rate test mode is not available for the backplane output streams BSTo0, 1, 4, 5, 8, 9, ... , 4n + 0 , 4n + 1 unless the output stream 4n + 2 or 4n + 3 (for 0 n 15 ) is enabled for the BER test mode. Figure 17 explains the details. When the backplane port is in the 16Mb/s mode, all backplane output streams are available.
32 Zarlink Semiconductor Inc.
Data Sheet
4.8 Device Initialization
MT90868
The RESET pin is a synchronous system reset signal that puts the MT90868 into its reset state. When RESET goes low, it disables the LSTo0-63 and LCSTo0-3 outputs and drives the BSTo0-63 outputs to high. It also clears the internal device registers and the internal counters. See Figure 25 for the reset timing. Upon powering up, the MT90868 must be initialized according to the following initialization sequences: * * * Set the ODE pin to low to tristate the LSTo0- 63, LCSTo0-3 and BSTo0-63 outputs. Set the TRST pin to low to disable the internal JTAG TAP controller, Set RESET pin to low to reset the device, To ensure proper reset action, the reset pin must be held low for longer than 500ns. A delay of 100s must also be applied before the first microprocessor access is performed after the RESET pin is set high, this delay is required for the initialization of the APLL. Use the Block Programming mode as described in the Memory Block Programming section to initialize the local and the backplane connection memories, Set the ODE pin to high after the connection memories are programmed to release the tristate on LSTo063, LCSTo0-3 and BSTo)-63 outputs. Set bit 11, STBY, of the Control Register (CR) to high for normal functional mode.
* * *
4.9
JTAG Support
The MT90868 JTAG interface conforms to the Boundary-Scan IEEE1149.1 standard. The operation of the boundary-scan circuitry is controlled by an external Test Access Port (TAP) Controller. See Figure 24 for the JTAG test port timing.
4.9.1
Test Access Port (TAP)
The Test Access Port (TAP) accesses the MT90868 test functions. It consists of four input pins and one output pin as follows: * Test Clock Input (TCK) TCK provides the clock for the test logic. The TCK does not interfere with any on-chip clock and thus remains independent in the functional mode. The TCK permits shifting of test data into or out of the Boundary-Scan register cells concurrently with the operation of the device and without interfering with the on-chip logic. Test Mode Select Input (TMS) The TAP Controller uses the logic signals received at the TMS input to control test operations. The TMS signals are sampled at the rising edge of the TCK pulse. This pin is internally pulled to Vdd when it is not driven from an external source. Test Data Input (TDi) Serial input data applied to this port is fed either into the instruction register or into a test data register, depending on the sequence previously applied to the TMS input. Both registers are described in a subsequent section. The received input data is sampled at the rising edge of TCK pulses. This pin is internally pulled to Vdd when it is not driven from an external source. Test Data Output (TDo) Depending on the sequence previously applied to the TMS input, the contents of either the instruction register or data register are serially shifted out towards the TDO. The data out of the TDO is clocked on the falling edge of the TCK pulses. When no data is shifted through the boundary scan cells, the TDO driver is set to a high impedance state. Test Reset (TRST) It resets the JTAG scan structure. This pin is internally pulled to Vdd when it is not driven from an external source.
*
*
*
*
Zarlink Semiconductor Inc.
33
MT90868
4.9.2 Instruction Register
Data Sheet
The MT90868 uses the public instructions defined in the IEEE 1149.1 standard. The JTAG Interface contains a fourbit instruction register. Instructions are serially loaded into the instruction register from the TDI when the TAP Controller is in its shifted-IR state. These instructions are subsequently decoded to achieve two basic functions: to select the test data register that may operate while the instruction is current and to define the serial test data register path that is used to shift data between TDI and TDO during data register scanning.
4.9.3
Test Data Register
As specified in IEEE 1149.1, the MT90868 JTAG Interface contains three test data registers: The Boundary-Scan Register The Boundary-Scan register consists of a series of Boundary-Scan cells arranged to form a scan path around the boundary of the MT90868 core logic. * The Bypass Register The Bypass register is a single stage shift register that provides a one-bit path from TDi to its TDo. * The Device Identification Register The JTAG device ID for the MT90868 is 0086814BH. Version<31:28>: 0000 Part No. <27:12>: 0000 1000 0110 1000 Manufacturer ID<11:1>: 0001 0100 101 LSB<0>: 1 *
4.9.4
BSDL
A BSDL (Boundary Scan Description Language) file is available from Zarlink Semiconductor to support the use of the IEEE 1149 test interface.
Read/Write Address: 0000H Reset Value: 0000H
15 BHIZ 14 LOCAEN 13 LICDEN 12 0 11 STBY 10 PRST 9 CBERB 8 SBERB 7 CBERL 6 SBERL 5 BMS 4 MBP 3 OSB 2 MS2 1 MS1 0 MS0
Bit 15
Name BHIZ
Description Backplane Tristate or Driven-High Control: When this bit is low, the backplane outputs support the per-channel tristate feature. When this bit is high, the backplane outputs support the per-channel driven high feature. Local Output Channel Advancement Enable: When this bit is high, the Local Output Channel Advancement is enabled and the local output data will pass through the local output channel advancement buffer as shown in Figure 1. The local output channel advancement registers (LOCAR31 - LOCAR0) control the channel advancement from 0 to 127 channels. When this bit is low, the channel advancement is disabled (default condition) and the local output data will bypass the local output channel advancement buffer. Local Input Channel Delay Enable: When this bit is high, the Local Input Channel Advancement is enabled and the local input data will pass through the local input channel delay buffer as shown in Figure 1. The local input channel delay registers (LICDR31 LICDR0) control the channel delay from 0 to 127 channels. When this bit is low, the channel delay is disabled (default condition) and the local input data will bypass the local input channel delay buffer. Table 5 - Control Register (CR) Bits
14
LOCAEN
13
LICDEN
34
Zarlink Semiconductor Inc.
Data Sheet
Read/Write Address: 0000H Reset Value: 0000H
15 BHIZ 14 LOCAEN 13 LICDEN 12 0 11 STBY 10 PRST 9 CBERB 8 SBERB 7 CBERL 6 SBERL 5 BMS 4 MBP 3 OSB
MT90868
2 MS2
1 MS1
0 MS0
Bit 12 11 10 9
Name Unused STBY PRST CBERB
Description Reserved. In normal functional mode, this bit MUST be set to zero. StandBy: In normal functional mode, this bit MUST be set to one after power up. PRBS Reset: When this bit is high, the output of the BER transmitter will be initialized. Backplane Bit Error Rate Clear: When this bit is high, it resets the backplane internal bit error counter and the content of the backplane bit error count register (BBCR) to zero. Upon completion of the reset, set this bit to zero. Backplane Bit Error Rate Test Start: When this bit is high, it enables the backplane BER transmitter and receiver; starts the backplane bit error rate test. The bit error test result is kept in the backplane bit error count (BBCR) register. Upon the completion of the BER test, set this bit to zero. Local Bit Error Rate Clear: When this bit is high, it resets the local internal bit error counter and the content of the local bit error count register (LBCR) to zero. Upon completion of the reset, set this bit to zero. Local Start Bit Error Rate Test: When this bit is high, it enables the local BER transmitter and receiver; starts the local bit error rate test. The bit error test result is kept in the local bit error count (LBCR) register. Upon the completion of the BER test, set this bit to zero. Backplane Mode Select: When the BIME pin is low and this bit is low, it enables the 16Mb/s mode and BSTi0-63 and BSTo0-63 have data rate of 16.384Mb/s. When the BIME pin is low and this bit is high, it enables the 32Mb/s mode and BSTi0-63 and BSTo0-63 have data rate of 32.768Mb/s. When the BIME pin is high, set this bit to high to enable the bit interleaving mode operation. Memory Block Programming: When this bit is high, the connection memory block programming mode is enabled to program Bit 15 of the Local Connection Memory Low, Bit 0 and Bit 1 of the Local Connection Memory High and Bit 13 to Bit 15 of the Backplane Connection Memory. When it is low, the memory block programming mode is disabled. Refer to Figure 15 for details. Table 5 - Control Register (CR) Bits (continued)
8
SBERB
7
CBERL
6
SBERL
5
BMS
4
MBP
Zarlink Semiconductor Inc.
35
MT90868
Read/Write Address: 0000H Reset Value: 0000H
15 BHIZ 14 LOCAEN 13 LICDEN 12 0 11 STBY 10 PRST 9 CBERB 8 SBERB 7 CBERL 6 SBERL 5 BMS 4 MBP 3 OSB
Data Sheet
2 MS2
1 MS1
0 MS0
Bit 3
Name OSB
Description Output Stand By Bit: This bit enables the BSTo0 - BSTOo63 and the LSTo0 - LSTo63 serial outputs. The following table describes the HiZ control of the serial data outputs:
BIME Pin 1 1 1 1 0 0 0 0 0 0 RESET Pin 0 1 1 1 0 1 1 1 1 1 ODE Pin X 0 1 1 X 0 0 1 1 1 OSB Bit X X 0 1 X X X 0 0 1 BHIZ Bit X X X X X 0 1 0 1 X LSTo0 to LSTo63 HiZ HiZ HiZ Active HiZ HiZ HiZ HiZ HiZ Active BSTo0 to BSTo63 Driven High Driven High Driven High Active HiZ HiZ Driven High HiZ Driven High Active LCSTo0 to LCSTo3 Driven High Driven High Driven High Active Driven High Driven High Driven High Driven High Driven High Active
2-0
MS2 - 0
Memory Select Bit: These three bits are used to select different connection and data memories: 000, Local Connection Memory Low (LCML) is selected for read or write operations. 001, Local Connection Memory high (LCMH) is selected for read or write operations. 010, Backplane Connection Memory (BCM) is selected for read or write operations. 011, Local Data Memory is selected for read operation; Streams E and F are selected by the LDMRSR register can be read. 100, Backplane Data Memory is selected for read operation; Streams C and D are selected by the BDMRSR registers can be read. Table 5 - Control Register (CR) Bits (continued)
36
Zarlink Semiconductor Inc.
Data Sheet
Read/Write Address: 0001H Reset Value: 0000H
15 0 14 0 13 0 12 0 11 LC8C 10 BFP 8C 9 LFP 16C 8 LFP 8C 7 LFP 4C 6 BBPD 2 5 BBPD 1 4 BBPD 0 3 LBPD 2 2
MT90868
1 LBPD 0
0 BPE
LBPD 1
Bit 15 - 12 11
Name Unused LC8C
Description Reserved. In normal functional mode, these bits MUST be set to zero. Local 8M Output (C8o) Polarity Control: When this bit is low, the C8o falling edge aligns with the frame boundary. When it is high, the C8o rising edge aligns with the frame boundary. Backplane Frame Pulse (FP8i) Polarity Control: When this bit is low, the input frame pulse should have the negative frame pulse format; the frame pulse goes low for 122ns at the frame boundary. When it is high, the input frame pulse should have the positive frame pulse format; the frame pulse goes high for 122ns at the frame boundary. Local Frame Pulse (FP16o) Polarity Control: When this bit is low, the output frame pulse has the negative frame pulse format. The frame pulse goes low for 61ns at the frame boundary. When it is high, the output frame pulse has the positive frame pulse format. The frame pulse goes high for 61ns at the frame boundary. Local Frame Pulse (FP8o) Polarity Control: When this bit is low, the output frame pulse has the negative frame pulse format. The frame pulse goes low for 122ns at the frame boundary. When it is high, the output frame pulse has the positive frame pulse format. The frame pulse goes high for 122ns at the frame boundary. Local Frame Pulse (FP4o) Polarity Control: When this bit is low, the output frame pulse has the negative frame pulse format. The frame pulse goes low for 244ns at the frame boundary. When it is high, the output frame pulse has the positive frame pulse format. The frame pulse goes high for 244ns at the frame boundary. Backplane Block Programming Data: These bits refer to the value to be loaded into the backplane connection memory (BCM) whenever the memory block programming feature is activated. After the MBP bit in the control register is set to high and the BPE bit is set to high, the contents of the bits BBPD2-0 are loaded into Bit 13 to Bit 15 of the BCM. Bit 0-12 of the BCM are zeroed. Local Block Programming Data: These bits refer to the value to be loaded into the local connection memory, i.e. Local Connection Memory Low (LCML) and Local Connection Memory High (LCMH), whenever the memory block programming feature is activated. After the MBP bit in the control register is set to high and the BPE bit is set to high, the contents of the bits LBPD0 is loaded into Bit 15 of the LCML and the LBPD1 to LBPD2 are loaded into Bit 0 to Bit 1 of the LCMH. Bit 0 to Bit 14 of LCML and Bit 2 to Bit 14 of LCMH are zeroed. Block Programming Enable.: A zero to one transition of this bit enables the memory block programming function. The BPE, LBPD2-0 and BBPD2-0 bits in the BPR register must be defined in the same write operation. Once the BPE bit is set to high, the device requires two frames to complete the block programming. After the programming function has finished, the BPE bit returns to low indicating the operation is completed. When the BPE is high, the BPE or MBP can be set to low to abort the programming operation. When BPE is high, the other bits in the BPR register must not be changed for two frames to ensure a proper block programming operation. Whenever the microprocessor writes a one to the BPE bit, the block programming function is started, the user must maintain the same logical value to the other bits in the BPR register to avoid any change in the device setting. Table 6 - Block Programming Register (BPR) Bits
10
BFP8C
9
LFP16C
8
LFP8C
7
LFP4c
6-4
BBPD2 - 0
3-1
LBPD2 - 0
0
BPE
Zarlink Semiconductor Inc.
37
MT90868
Read/Write Address: 0002H - 00011H Reset Value: 0000H
15 LICDR0 0 14
LICD 16
Data Sheet
13
LICD 15
12
LICD 14
11
LICD 13
10
LICD 12
9
LICD 11
8
LICD 10
7 0
6
LICD 06
5
LICD 05
4
LICD 04
3
LICD 03
2
LICD 02
1
LICD 01
0
LICD 00
LICDR1
0
LICD 36
LICD 35
LICD 34
LICD 33
LICD 32
LICD 31
LICD 30
0
LICD 26
LICD 25
LICD 24
LICD 23
LICD 22
LICD 21
LICD 20
LICDR2
0
LICD 56
LICD 55
LICD 54
LICD 53
LICD 52
LICD 51
LICD 50
0
LICD 46
LICD 45
LICD 44
LICD 43
LICD 42
LICD 41
LICD 40
LICDR3
0
LICD 76
LICD 75
LICD 74
LICD 73
LICD 72
LICD 71
LICD 70
0
LICD 66
LICD 65
LICD 64
LICD 63
LICD 62
LICD 61
LICD 60
LICDR4
0
LICD 96
LICD 95
LICD 94
LICD 93
LICD 92
LICD 91
LICD 90
0
LICD 86
LICD 85
LICD 84
LICD 83
LICD 82
LICD 81
LICD 80
LICDR5
0
LICD 116
LICD 115
LICD 114
LICD 113
LICD 112
LICD 111
LICD 110
0
LICD 106
LICD 105
LICD 104
LICD 103
LICD 102
LICD 101
LICD 100
LICDR6
0
LICD 136
LICD 135
LICD 134
LICD 133
LICD 132
LICD 131
LICD 130
0
LICD 126
LICD 125
LICD 124
LICD 123
LICD 122
LICD 121
LICD 120
LICDR7
0
LICD 156
LICD 155
LICD 154
LICD 153
LICD 152
LICD 151
LICD 150
0
LICD 146
LICD 145
LICD 144
LICD 143
LICD 142
LICD 141
LICD 140
LICDR8
0
LICD 176
LICD 175
LICD 174
LICD 173
LICD 172
LICD 171
LICD 170
0
LICD 166
LICD 165
LICD 164
LICD 163
LICD 162
LICD 161
LICD 160
LICDR9
0
LICD 196
LICD 195
LICD 194
LICD 193
LICD 192
LICD 191
LICD 190
0
LICD 186
LICD 185
LICD 184
LICD 183
LICD 182
LICD 181
LICD 180
LICDR10
0
LICD 216
LICD 215
LICD 214
LICD 213
LICD 212
LICD 211
LICD 210
0
LICD 206
LICD 205
LICD 204
LICD 203
LICD 202
LICD 201
LICD 200
LICDR11
0
LICD 236
LICD 235
LICD 234
LICD 233
LICD 232
LICD 231
LICD 230
0
LICD 226
LICD 225
LICD 224
LICD 223
LICD 222
LICD 221
LICD 220
LICDR12
0
LICD 256
LICD 255
LICD 254
LICD 253
LICD 252
LICD 251
LICD 250
0
LICD 246
LICD 245
LICD 244
LICD 243
LICD 242
LICD 241
LICD 240
LICDR13
0
LICD 276
LICD 275
LICD 274
LICD 273
LICD 272
LICD 271
LICD 270
0
LICD 266
LICD 265
LICD 264
LICD 263
LICD 262
LICD 261
LICD 260
LICDR14
0
LICD 296
LICD 295
LICD 294
LICD 293
LICD 292
LICD 291
LICD 290
0
LICD 286
LICD 285
LICD 284
LICD 283
LICD 282
LICD 281
LICD 280
LICDR15
0
LICD 316
LICD 315
LICD 314
LICD 313
LICD 312
LICD 311
LICD 310
0
LICD 306
LICD 305
LICD 304
LICD 303
LICD 302
LICD 301
LICD 300
Name LICDx6 - LICDx0 (See Note 1)
Description Local Input Channel Delay Bits 6 - 0: The binary value of these seven bits defines the local input channel delay of the local data inputs. The input channel delay can be selected from Ch0 to Ch127 away from the local frame boundary. The local input channel offset delay value is only valid when the LICDEN bit is high in the control register.
Note 1: x denotes a LSTi stream number from 0 to 31.
Table 7 - Local Input Channel Delay Registers (LICDR0 to LICDR15)
38
Zarlink Semiconductor Inc.
Data Sheet
MT90868
Read/Write Address: 0012H - 00021H Reset Value: 0000H 15
LICDR16 0
14
LICD 336
13
LICD 335
12
LICD 334
11
LICD 333
10
LICD 332
9
LICD 331
8
LICD 330
7
0
6
LICD 326
5
LICD 325
4
LICD 324
3
LICD 323
2
LICD 322
1
LICD 321
0
LICD 320
LICDR17
0
LICD 356
LICD 355
LICD 354
LICD 353
LICD 352
LICD 351
LICD 350
0
LICD 346
LICD 345
LICD 344
LICD 343
LICD 342
LICD 341
LICD 340
LICDR18
0
LICD 376
LICD 375
LICD 374
LICD 373
LICD 372
LICD 371
LICD 370
0
LICD 366
LICD 365
LICD 364
LICD 363
LICD 362
LICD 361
LICD 360
LICDR19
0
LICD 396
LICD 395
LICD 394
LICD 393
LICD 392
LICD 391
LICD 390
0
LICD 386
LICD 385
LICD 384
LICD 383
LICD 382
LICD 381
LICD 380
LICDR20
0
LICD 416
LICD 415
LICD 414
LICD 413
LICD 412
LICD 411
LICD 410
0
LICD 406
LICD 405
LICD 404
LICD 403
LICD 402
LICD 401
LICD 400
LICDR21
0
LICD 436
LICD 435
LICD 434
LICD 433
LICD 432
LICD 431
LICD 430
0
LICD 426
LICD 425
LICD 424
LICD 423
LICD 422
LICD 421
LICD 420
LICDR22
0
LICD 456
LICD 455
LICD 454
LICD 453
LICD 452
LICD 451
LICD 450
0
LICD 446
LICD 445
LICD 444
LICD 443
LICD 442
LICD 441
LICD 440
LICDR23
0
LICD 476
LICD 475
LICD 474
LICD 473
LICD 472
LICD 471
LICD 470
0
LICD 466
LICD 465
LICD 464
LICD 463
LICD 462
LICD 461
LICD 460
LICDR24
0
LICD 496
LICD 495
LICD 494
LICD 493
LICD 492
LICD 491
LICD 490
0
LICD 486
LICD 485
LICD 484
LICD 483
LICD 482
LICD 481
LICD 480
LICDR25
0
LICD 516
LICD 515
LICD 514
LICD 513
LICD 512
LICD 511
LICD 510
0
LICD 506
LICD 505
LICD 504
LICD 503
LICD 502
LICD 501
LICD 500
LICDR26
0
LICD 536
LICD 535
LICD 534
LICD 533
LICD 532
LICD 531
LICD 530
0
LICD 526
LICD 525
LICD 524
LICD 523
LICD 522
LICD 521
LICD 520
LICDR27
0
LICD 556
LICD 555
LICD 554
LICD 553
LICD 552
LICD 551
LICD 550
0
LICD 546
LICD 545
LICD 544
LICD 543
LICD 542
LICD 541
LICD 540
LICDR28
0
LICD 576
LICD 575
LICD 574
LICD 573
LICD 572
LICD 571
LICD 570
0
LICD 566
LICD 565
LICD 564
LICD 563
LICD 562
LICD 561
LICD 560
LICDR29
0
LICD 596
LICD 595
LICD 594
LICD 593
LICD 592
LICD 591
LICD 590
0
LICD 586
LICD 585
LICD 584
LICD 583
LICD 582
LICD 581
LICD 580
LICDR30
0
LICD 616
LICD 615
LICD 614
LICD 613
LICD 612
LICD 611
LICD 610
0
LICD 606
LICD 605
LICD 604
LICD 603
LICD 602
LICD 601
LICD 600
LICDR31
0
LICD 636
LICD 635
LICD 634
LICD 633
LICD 632
LICD 631
LICD 630
0
LICD 626
LICD 625
LICD 624
LICD 623
LICD 622
LICD 621
LICD 620
Name LICDy6 - LICDy0 (See Note 1)
Description Local Input Channel Delay Bits 6 - 0: The binary value of these seven bits defines the local input channel delay of the local data inputs. The input channel delay can be selected from Ch0 to Ch127 away from the local frame boundary. The local input channel offset delay value is only valid when the LICDEN bit is high in the control register.
Note 1: y denotes a LSTi stream number from 32 to 63.
Table 8 - Local Input Channel Delay Registers (LICDR16 to LICDR31)
Zarlink Semiconductor Inc.
39
MT90868
Read/Write Address: 0022H - 00031H Reset Value: 0000H 15
LOCAR0 0
Data Sheet
14
LOCA 16
13
LOCA 15
12
LOCA 14
11
LOCA 13
10
LOCA 12
9
LOCA 11
8
LOCA 10
7
0
6
LOCA 06
5
LOCA 05
4
LOCA 04
3
LOCA 03
2
LOCA 02
1
LOCA 01
0
LOCA 00
LOCAR1
0
LOCA 36
LOCA 35
LOCA 34
LOCA 33
LOCA 32
LOCA 31
LOCA 30
0
LOCA 26
LOCA 25
LOCA 24
LOCA 23
LOCA 22
LOCA 21
LOCA 20
LOCAR2
0
LOCA 56
LOCA 55
LOCA 54
LOCA 53
LOCA 52
LOCA 51
LOCA 50
0
LOCA 46
LOCA 45
LOCA 44
LOCA 43
LOCA 42
LOCA 41
LOCA 40
LOCAR3
0
LOCA 76
LOCA 75
LOCA 74
LOCA 73
LOCA 72
LOCA 71
LOCA 70
0
LOCA 66
LOCA 65
LOCA 64
LOCA 63
LOCA 62
LOCA 61
LOCA 60
LOCAR4
0
LOCA 96
LOCA 95
LOCA 94
LOCA 93
LOCA 92
LOCA 91
LOCA 90
0
LOCA 86
LOCA 85
LOCA 84
LOCA 83
LOCA 82
LOCA 81
LOCA 80
LOCAR5
0
LOCA 116
LOCA 115
LOCA 114
LOCA 113
LOCA 112
LOCA 111
LOCA 110
0
LOCA 106
LOCA 105
LOCA 104
LOCA 103
LOCA 102
LOCA 101
LOCA 100
LOCAR6
0
LOCA 136
LOCA 135
LOCA 134
LOCA 133
LOCA 132
LOCA 131
LOCA 130
0
LOCA 126
LOCA 125
LOCA 124
LOCA 123
LOCA 122
LOCA 121
LOCA 120
LOCAR7
0
LOCA 156
LOCA 155
LOCA 154
LOCA 153
LOCA 152
LOCA 151
LOCA 150
0
LOCA 146
LOCA 145
LOCA 144
LOCA 143
LOCA 142
LOCA 141
LOCA 140
LOCAR8
0
LOCA 176
LOCA 175
LOCA 174
LOCA 173
LOCA 172
LOCA 171
LOCA 170
0
LOCA 166
LOCA 165
LOCA 164
LOCA 163
LOCA 162
LOCA 161
LOCA 160
LOCAR9
0
LOCA 196
LOCA 195
LOCA 194
LOCA 193
LOCA 192
LOCA 191
LOCA 190
0
LOCA 186
LOCA 185
LOCA 184
LOCA 183
LOCA 182
LOCA 181
LOCA 180
LOCAR10
0
LOCA 216
LOCA 215
LOCA 214
LOCA 213
LOCA 212
LOCA 211
LOCA 210
0
LOCA 206
LOCA 205
LOCA 204
LOCA 203
LOCA 202
LOCA 201
LOCA 200
LOCAR11
0
LOCA 236
LOCA 235
LOCA 234
LOCA 233
LOCA 232
LOCA 231
LOCA 230
0
LOCA 226
LOCA 225
LOCA 224
LOCA 223
LOCA 222
LOCA 221
LOCA 220
LOCAR12
0
LOCA 256
LOCA 255
LOCA 254
LOCA 253
LOCA 252
LOCA 251
LOCA 250
0
LOCA 246
LOCA 245
LOCA 244
LOCA 243
LOCA 242
LOCA 241
LOCA 240
LOCAR13
0
LOCA 276
LOCA 275
LOCA 274
LOCA 273
LOCA 272
LOCA 271
LOCA 270
0
LOCA 266
LOCA 265
LOCA 264
LOCA 263
LOCA 262
LOCA 261
LOCA 260
LOCAR14
0
LOCA 296
LOCA 295
LOCA 294
LOCA 293
LOCA 292
LOCA 291
LOCA 290
0
LOCA 286
LOCA 285
LOCA 284
LOCA 283
LOCA 282
LOCA 281
LOCA 280
LOCAR15
0
LOCA 316
LOCA 315
LOCA 314
LOCA 313
LOCA 312
LOCA 311
LOCA 310
0
LOCA 306
LOCA 305
LOCA 304
LOCA 303
LOCA 302
LOCA 301
LOCA 300
Name LOCAx6 - LOCAx0 (See Note 1)
Description Local Output Channel Advancement Bits 6 - 0: The binary value of these seven bits defines the local output channel advancement of the local data outputs. The output channel advancement can be selected from Ch0 to Ch127 before the local frame boundary. The local output channel advancement value is only valid when the LOCAEN bit is high in the control register.
Note 1: x denotes a LSTo stream number from 0 to 31.
Table 9 - Local Output Channel Advancement Registers (LOCAR0 to LOCAR16)
40
Zarlink Semiconductor Inc.
Data Sheet
MT90868
Zarlink Semiconductor Inc.
41
MT90868
Read/Write Address: 0032H - 00041H Reset Value: 0000H 15
LOCAR16 0
Data Sheet
14
LOCA 336
13
LOCA 335
12
LOCA 334
11
LOCA 333
10
LOCA 332
9
LOCA 331
8
LOCA 330
7
0
6
LOCA 326
5
LOCA 325
4
LOCA 324
3
LOCA 323
2
LOCA 322
1
LOCA 321
0
LOCA 320
LOCAR17
0
LOCA 356
LOCA 355
LOCA 354
LOCA 353
LOCA 352
LOCA 351
LOCA 350
0
LOCA 346
LOCA 345
LOCA 344
LOCA 343
LOCA 342
LOCA 341
LOCA 340
LOCAR18
0
LOCA 376
LOCA 375
LOCA 374
LOCA 373
LOCA 372
LOCA 371
LOCA 370
0
LOCA 366
LOCA 365
LOCA 364
LOCA 363
LOCA 362
LOCA 361
LOCA 360
LOCAR19
0
LOCA 396
LOCA 395
LOCA 394
LOCA 393
LOCA 392
LOCA 391
LOCA 390
0
LOCA 386
LOCA 385
LOCA 384
LOCA 383
LOCA 382
LOCA 381
LOCA 380
LOCAR20
0
LOCA 416
LOCA 415
LOCA 414
LOCA 413
LOCA 412
LOCA 411
LOCA 410
0
LOCA 406
LOCA 405
LOCA 404
LOCA 403
LOCA 402
LOCA 401
LOCA 400
LOCAR21
0
LOCA 436
LOCA 435
LOCA 434
LOCA 433
LOCA 432
LOCA 431
LOCA 430
0
LOCA 426
LOCA 425
LOCA 424
LOCA 423
LOCA 422
LOCA 421
LOCA 420
LOCAR22
0
LOCA 456
LOCA 455
LOCA 454
LOCA 453
LOCA 452
LOCA 451
LOCA 450
0
LOCA 446
LOCA 445
LOCA 444
LOCA 443
LOCA 442
LOCA 441
LOCA 440
LOCAR23
0
LOCA 476
LOCA 475
LOCA 474
LOCA 473
LOCA 472
LOCA 471
LOCA 470
0
LOCA 466
LOCA 465
LOCA 464
LOCA 463
LOCA 462
LOCA 461
LOCA 460
LOCAR24
0
LOCA 496
LOCA 495
LOCA 494
LOCA 493
LOCA 492
LOCA 491
LOCA 490
0
LOCA 486
LOCA 485
LOCA 484
LOCA 483
LOCA 482
LOCA 481
LOCA 480
LOCAR25
0
LOCA 516
LOCA 515
LOCA 514
LOCA 513
LOCA 512
LOCA 511
LOCA 510
0
LOCA 506
LOCA 505
LOCA 504
LOCA 503
LOCA 502
LOCA 501
LOCA 500
LOCAR26
0
LOCA 536
LOCA 535
LOCA 534
LOCA 533
LOCA 532
LOCA 531
LOCA 530
0
LOCA 526
LOCA 525
LOCA 524
LOCA 523
LOCA 522
LOCA 521
LOCA 520
LOCAR27
0
LOCA 556
LOCA 555
LOCA 554
LOCA 553
LOCA 552
LOCA 551
LOCA 550
0
LOCA 546
LOCA 545
LOCA 544
LOCA 543
LOCA 542
LOCA 541
LOCA 540
LOCAR28
0
LOCA 576
LOCA 575
LOCA 574
LOCA 573
LOCA 572
LOCA 571
LOCA 570
0
LOCA 566
LOCA 565
LOCA 564
LOCA 563
LOCA 562
LOCA 561
LOCA 560
LOCAR29
0
LOCA 596
LOCA 595
LOCA 594
LOCA 593
LOCA 592
LOCA 591
LOCA 590
0
LOCA 586
LOCA 585
LOCA 584
LOCA 583
LOCA 582
LOCA 581
LOCA 580
LOCAR30
0
LOCA 616
LOCA 615
LOCA 614
LOCA 613
LOCA 612
LOCA 611
LOCA 610
0
LOCA 606
LOCA 605
LOCA 604
LOCA 603
LOCA 602
LOCA 601
LOCA 600
LOCAR31
0
LOCA 636
LOCA 635
LOCA 634
LOCA 633
LOCA 632
LOCA 631
LOCA 630
0
LOCA 626
LOCA 625
LOCA 624
LOCA 623
LOCA 622
LOCA 621
LOCA 620
Name
Description
LOCAy6 - LOCAy0 (See Note 1)
Local Output Channel Advancement Bits 6 - 0: The binary value of these seven bits defines the local output channel advancement of the local data outputs. The output channel advancement can be selected from Ch0 to Ch127 before the local frame boundary. The local output channel advancement value is only valid when the LOCAEN bit is high in the control register.
Note 1: y denotes a LSTo stream number from 32 to 63.
Table 10 - Local Output Channel Advancement Registers (LOCAR15 to LOCAR31)
42
Zarlink Semiconductor Inc.
Data Sheet
Read/Write Address: 0042H - 00051H Reset Value: 0000H 15
LIDR0 0
MT90868
14
LID 24 LID 54 LID 84 LID 114 LID 144 LID 174 LID 204 LID 234 LID 264 LID 294 LID 324 LID 354 LID 384 LID 414 LID 444 LID 474
13
LID 23 LID 53 LID 83 LID 113 LID 143 LID 173 LID 203 LID 233 LID 263 LID 293 LID 323 LID 353 LID 383 LID 413 LID 443 LID 473
12
LID 22 LID 52 LID 82 LID 112 LID 142 LID 172 LID 202 LID 232 LID 262 LID 292 LID 322 LID 352 LID 382 LID 412 LID 442 LID 472
11
LID 21 LID 51 LID 81 LID 111 LID 141 LID 171 LID 201 LID 231 LID 261 LID 291 LID 321 LID 351 LID 381 LID 411 LID 441 LID 471
10
LID 20 LID 50 LID 80 LID 110 LID 140 LID 170 LID 200 LID 230 LID 260 LID 290 LID 320 LID 350 LID 380 LID 410 LID 440 LID 470
9
LID 14 LID 44 LID 74 LID 104 LID 134 LID 164 LID 194 LID 224 LID 254 LID 284 LID 314 LID 344 LID 374 LID 404 LID 434 LID 464
8
LID 13 LID 43 LID 73 LID 103 LID 133 LID 163 LID 193 LID 223 LID 253 LID 283 LID 313 LID 343 LID 373 LID 403 LID 433 LID 463
7
LID1 2 LID4 2 LID7 2 LID1 02 LID1 32 LID1 62 LID1 92 LID2 22 LID2 52 LID2 82 LID3 12 LID3 42 LID3 72 LID4 02 LID4 32 LID4 62
6
LID 11 LID 41 LID 71 LID 101 LID 131 LID 161 LID 191 LID 221 LID 251 LID 281 LID 311 LID 341 LID 371 LID 401 LID 431 LID 461
5
LID 10 LID 40 LID 70 LID 100 LID 130 LID 160 LID 190 LID 220 LID 250 LID 280 LID 310 LID 340 LID 370 LID 400 LID 430 LID 460
4
LID 04 LID 34 LID 64 LID 94 LID 124 LID 154 LID 184 LID 214 LID 244 LID 274 LID 304 LID 334 LID 364 LID 394 LID 424 LID 454
3
LID 03 LID 33 LID 63 LID 93 LID 123 LID 153 LID 183 LID 213 LID 243 LID 273 LID 303 LID 333 LID 363 LID 393 LID 423 LID 453
2
LID 02 LID 32 LID 62 LID 92 LID 122 LID 152 LID 182 LID 212 LID 242 LID 272 LID 302 LID 332 LID 362 LID 392 LID 422 LID 452
1
LID 01 LID 31 LID 61 LID 91 LID 121 LID 151 LID 181 LID 211 LID 241 LID 271 LID 301 LID 331 LID 361 LID 391 LID 421 LID 451
0
LID 00 LID 30 LID 60 LID 90 LID 120 LID 150 LID 180 LID 210 LID 240 LID 270 LID 300 LID 330 LID 360 LID 390 LID 420 LID 450
LIDR1
0
LIDR2
0
LIDR3
0
LIDR4
0
LIDR5
0
LIDR6
0
LIDR7
0
LIDR8
0
LIDR9
0
LIDR10
0
LIDR11
0
LIDR12
0
LIDR13
0
LIDR14
0
LIDR15
0
Name
Description
LIDn4 - LIDn0 (See Note 1)
Local Input Bit Delay Bits 4 - 0: The binary value of these five bits defines the local input bit delay of the LSTi inputs. The local input bit delay can be selected from 0 to 7 3/4 C8o clock periods. See Table 13 for details
Note 1: n denotes a LSTi stream number from 0 to 47.
Table 11 - Local Input Bit Delay Registers (LIDR0 to LIDR15)
Zarlink Semiconductor Inc.
43
MT90868
Read/Write Address: 0052H - 00057H Reset Value: 0000H 15
LIDR16 0
Data Sheet
14
LID 504 LID 534 LID 564 LID 594 LID 624 0
13
LID 503 LID 533 LID 563 LID 593 LID 623 0
12
LID 502 LID 532 LID 562 LID 592 LID 622 0
11
LID 501 LID 531 LID 561 LID 591 LID 621 0
10
LID 500 LID 530 LID 560 LID 590 LID 620 0
9
LID 494 LID 524 LID 554 LID 584 LID 614 0
8
LID 493 LID 523 LID 553 LID 583 LID 613 0
7
LID4 92 LID5 22 LID5 52 LID5 82 LID6 12 0
6
LID 491 LID 521 LID 551 LID 581 LID 611 0
5
LID 490 LID 520 LID 550 LID 580 LID 610 0
4
LID 484 LID 514 LID 544 LID 574 LID 604 LID 634
3
LID 483 LID 513 LID 543 LID 573 LID 603 LID 633
2
LID 482 LID 512 LID 542 LID 572 LID 602 LID 632
1
LID 481 LID 511 LID 541 LID 571 LID 601 LID 631
0
LID 480 LID 510 LID 540 LID 570 LID 600 LID 630
LIDR17
0
LIDR18
0
LIDR19
0
LIDR20
0
LIDR21
0
Name LIDn4 - LIDn0 (See Note 1)
Description Local Input Bit Delay Bits 4 - 0: The binary value of these five bits defines the local input bit delay of the LSTi inputs. The local input bit delay can be selected from 0 to 7 3/4 C8o clock periods. See Table 13 for details.
Note 1: n denotes a LSTi stream number from 48 to 63.
Table 12 - Local Input Bit Delay Registers (LIDR16 to LIDR21) Local Input Delay C8o (period) 0 (Default) 1/4 1/2 3/4 1 1 1/4 1 1/2 1 3/4 2 2 1/4 2 1/2 2 3/4 3 3 1/4 8.192Mb/s (bit) 0 1/4 1/2 3/4 1 1 1/4 1 1/2 1 3/4 2 2 1/4 2 1/2 2 3/4 3 3 1/4 LIDn4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Corresponding Delay Bits LIDn3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 LIDn2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 LIDn1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 LIDn0 0 1 0 1 0 1 0 1 0 1 0 1 0 1
Table 13 - Local Input Bit Delay Programming Table
44
Zarlink Semiconductor Inc.
Data Sheet
Local Input Delay C8o (period) 3 1/2 3 3/4 4 4 1/4 4 1/2 4 3/4 5 5 1/4 5 1/2 5 3/4 6 6 1/4 6 1/2 6 3/4 7 7 1/4 7 1/2 7 3/4 8.192Mb/s (bit) 3 1/2 3 3/4 4 4 1/4 4 1/2 4 3/4 5 5 1/4 5 1/2 5 3/4 6 6 1/4 6 1/2 6 3/4 7 7 1/4 7 1/2 7 3/4 LIDn4 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
MT90868
Corresponding Delay Bits LIDn3 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 LIDn2 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 LIDn1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 LIDn0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
Table 13 - Local Input Bit Delay Programming Table (continued)
Zarlink Semiconductor Inc.
45
MT90868
Data Sheet
Read/Write Address: 0058H - 0005DH Reset Value: 0000H 15
BIDR0 0
14
BID 24 BID 54 BID 84 BID 114 BID 144 BID 174
13
BID 23 BID 53 BID 83 BID 113 BID 143 BID 173
12
BID 22 BID 52 BID 82 BID 112 BID 142 BID 172
11
BID 21 BID 51 BID 81 BID 111 BID 141 BID 171
10
BID 20 BID 50 BID 80 BID 110 BID 140 BID 170
9
BID 14 BID 44 BID 74 BID 104 BID 134 BID 164
8
BID 13 BID 43 BID 73 BID 103 BID 133 BID 163
7
BID 12 BID 42 BID 72 BID 102 BID 132 BID 162
6
BID 11 BID 41 BID 71 BID 101 BID 131 BID 161
5
BID 10 BID 40 BID 70 BID 100 BID 130 BID 160
4
BID 04 BID 34 BID 64 BID 94 BID 124 BID 154
3
BID 03 BID 33 BID 63 BID 93 BID 123 BID 153
2
BID 02 BID 32 BID 62 BID 92 BID 122 BID 152
1
BID 01 BID 31 BID 61 BID 91 BID 121 BID 151
0
BID 00 BID 30 BID 60 BID 90 BID 120 BID 150
BIDR1
0
BIDR2
0
BIDR3
0
BIDR4
0
BIDR5
0
Name BIDn4 - BIDn0 (See Note 1)
Description Backplane Input Bit Delay Bits 4 - 0: The binary value of these five bits defines the backplane input bit delay of the BSTi inputs. The backplane input bit delay can be selected from 0 to 3 7/8 C8i clock periods. See Table 16 for details.
Note 1: n denotes a BSTi stream number from 0 to 17.
Table 14 - Backplane Input Bit Delay Registers (BIDR0 to BIDR5)
46
Zarlink Semiconductor Inc.
Data Sheet
Read/Write Address: 005EH - 0006DH Reset Value: 0000H 15
BIDR6 0
MT90868
14
BID 204 BID 234 BID 264 BID 294 BID 324 BID 354 BID 384 BID 414 BID 444 BID 474 BID 504 BID 534 BID 564 BID 594 BID 624 0
13
BID 203 BID 233 BID 263 BID 293 BID 323 BID 353 BID 383 BID 413 BID 443 BID 473 BID 503 BID 533 BID 563 BID 593 BID 623 0
12
BID 202 BID 232 BID 262 BID 292 BID 322 BID 352 BID 382 BID 412 BID 442 BID 472 BID 502 BID 532 BID 562 BID 592 BID 622 0
11
BID 201 BID 231 BID 261 BID 291 BID 321 BID 351 BID 381 BID 411 BID 441 BID 471 BID 501 BID 531 BID 561 BID 591 BID 621 0
10
BID 200 BID 230 BID 260 BID 290 BID 320 BID 350 BID 380 BID 410 BID 140 BID 470 BID 500 BID 530 BID 560 BID 590 BID 620 0
9
BID 194 BID 224 BID 254 BID 284 BID 314 BID 344 BID 374 BID 404 BID 434 BID 464 BID 494 BID 524 BID 554 BID 584 BID 614 0
8
BID 193 BID 223 BID 253 BID 283 BID 313 BID 343 BID 373 BID 403 BID 433 BID 463 BID 493 BID 523 BID 553 BID 583 BID 613 0
7
BID 192 BID 222 BID 252 BID 282 BID 312 BID 342 BID 372 BID 402 BID 432 BID 462 BID 492 BID 522 BID 552 BID 582 BID 612 0
6
BID 191 BID 221 BID 251 BID 281 BID 311 BID 341 BID 371 BID 401 BID 431 BID 461 BID 491 BID 521 BID 551 BID 581 BID 611 0
5
BID 190 BID 220 BID 250 BID 280 BID 310 BID 340 BID 370 BID 400 BID 430 BID 460 BID 490 BID 520 BID 550 BID 580 BID 610 0
4
BID 184 BID 214 BID 244 BID 274 BID 304 BID 334 BID 364 BID 394 BID 424 BID 454 BID 484 BID 514 BID 544 BID 574 BID 604 BID 634
3
BID 183 BID 213 BID 243 BID 273 BID 303 BID 333 BID 363 BID 393 BID 423 BID 453 BID 483 BID 513 BID 543 BID 573 BID 603 BID 633
2
BID 182 BID 212 BID 242 BID 272 BID 302 BID 332 BID 362 BID 392 BID 422 BID 452 BID 482 BID 512 BID 542 BID 572 BID 602 BID 632
1
BID 181 BID 211 BID 241 BID 271 BID 301 BID 331 BID 361 BID 391 BID 421 BID 451 BID 481 BID 511 BID 541 BID 571 BID 601 BID 631
0
BID 180 BID 210 BID 240 BID 270 BID 300 BID 330 BID 360 BID 390 BID 420 BID 450 BID 480 BID 510 BID 540 BID 570 BID 600 BID 630
BIDR7
0
BIDR8
0
BIDR9
0
BIDR10
0
BIDR11
0
BIDR12
0
BIDR13
0
BIDR14
0
BIDR15
0
BIDR16
0
BIDR17
0
BIDR18
0
BIDR19
0
BIDR20
0
BIDR21
0
Name BIDn4 - BIDn0 (See Note 1)
Description Backplane Input Bit Delay Bits 4 - 0: The binary value of these five bits defines the backplane input bit delay of the BSTi inputs. The backplane input bit delay can be selected from 0 to 3 7/8 C8i clock periods. See Table 16 for details.
Note 1: n denotes a BSTi stream number from 18 to 63.
Table 15 - Backplane Input Bit Delay Registers (BIDR0 to BIDR5)
Zarlink Semiconductor Inc.
47
MT90868
Backplane Input Delay C8i (period) 0 (Default) 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1 1 1/8 1 1/4 1 3/8 1 1/2 1 5/8 1 3/4 1 7/8 2 2 1/8 2 1/4 2 3/8 2 1/2 2 5/8 2 3/4 2 7/8 3 3 1/8 3 1/4 3 3/8 3 1/2 3 5/8 3 3/4 3 7/8 16.384Mb/s (bit) 0 1/4 1/2 3/4 1 1 1/4 1 1/2 1 3/4 2 2 1/4 2 1/2 2 3/4 3 3 1/4 3 1/2 3 3/4 4 4 1/4 4 1/2 4 3/4 5 5 1/4 5 1/2 5 3/4 6 6 1/4 6 1/2 6 3/4 7 7 1/4 7 1/2 7 3/4 N/A 32.768Mb/s (bit) 0 1/2 1 1 1/2 2 2 1/2 3 3 1/2 4 4 1/2 5 5 1/2 6 6 1/2 7 7 1/2 BIDn4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 BIDn3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 BIDn2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
Data Sheet
Corresponding Delay Bits BIDn1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 BIDn0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
Table 16 - Backplane Input Bit Delay Programming Table
48
Zarlink Semiconductor Inc.
Data Sheet
Read/Write Address: 006EH - 00075H Reset Value: 0000H 15
LOAR0 LOA 71
MT90868
14
LOA 70
13
LOA 61
12
LOA 60
11
LOA 51
10
LOA 50
9
LOA 41
8
LOA 40
7
LOA 31
6
LOA 30
5
LOA 21
4
LOA 20
3
LOA 11
2
LOA 10
1
LOA 01
0
LOA 00
LOAR1
LOA 151
LOA 150
LOA 141
LOA 140
LOA 131
LOA 130
LOA 121
LOA 120
LOA 111
LOA 110
LOA 101
LOA 100
LOA 91
LOA 90
LOA 81
LOA 80
LOAR2
LOA 231
LOA 230
LOA 221
LOA 220
LOA 211
LOA 210
LOA 201
LOA 200
LOA 191
LOA 190
LOA 181
LOA 180
LOA 171
LOA 170
LOA 161
LOA 160
LOAR3
LOA 311
LOA 310
LOA 301
LOA 300
LOA 291
LOA 290
LOA 281
LOA 280
LOA 271
LOA 270
LOA 271
LOA 260
LOA 251
LOA 250
LOA 241
LOA 240
LOAR4
LOA 391
LOA 390
LOA 381
LOA 380
LOA 371
LOA 370
LOA 361
LOA 360
LOA 351
LOA 350
LOA 341
LOA 340
LOA 331
LOA 330
LOA 321
LOA 320
LOAR5
LOA 471
LOA 470
LOA 461
LOA 460
LOA 451
LOA 450
LOA 441
LOA 440
LOA 431
LOA 430
LOA 421
LOA 420
LOA 411
LOA 410
LOA 401
LOA 400
LOAR6
LOA 551
LOA 550
LOA 541
LOA 540
LOA 531
LOA 530
LOA 521
LOA 520
LOA 511
LOA 510
LOA 501
LOA 500
LOA 491
LOA 490
LOA 481
LOA 480
LOAR7
LOA 631
LOA 630
LOA 621
LOA 620
LOA 611
LOA 610
LOA 601
LOA 600
LOA 591
LOA 590
LOA 581
LOA 580
LOA 571
LOA 570
LOA 561
LOA 560
Name LOAn1 - LOAn0 (See Note 1)
Description Local Output Advancement Bits 1 - 0: The binary value of these two bits defines the local output advancement of the LSTo outputs. The local output advancement can be selected from 0 to - 3/8 C8o clock periods. See Table 18 for details.
Note 1: n denotes a LSTo stream number from 0 to 63.
Table 17 - Local Output Advancement Registers (LOAR0 to LOAR7)
Local Output Advancement C8o (period) 0 (Default) - 1/8 - 1/4 - 3/8 8.192Mb/s (bit) 0 - 1/8 - 1/4 - 3/8
Corresponding Advancement Bits LOAn1 0 0 1 1 LOAn0 0 1 0 1
Table 18 - Local Output Advancement Programming Table
Zarlink Semiconductor Inc.
49
MT90868
Read/Write Address: 0076H - 0007DH Reset Value: 0000H 15
BOAR0 BOA 71 BOA 151 BOA 231 BOA 311 BOA 391 BOA 471 BOA 551 BOA 631
Data Sheet
14
BOA 70 BOA 150 BOA 230 BOA 310 BOA 390 BOA 470 BOA 550 BOA 630
13
BOA 61 BOA 141 BOA 221 BOA 301 BOA 381 BOA 461 BOA 541 BOA 621
12
BOA 60 BOA 140 BOA 220 BOA 300 BOA 380 BOA 460 BOA 540 BOA 620
11
BOA 51 BOA 131 BOA 211 BOA 291 BOA 371 BOA 451 BOA 531 BOA 611
10
BOA 50 BOA 130 BOA 210 BOA 290 BOA 370 BOA 450 BOA 530 BOA 610
9
BOA 41 BOA 121 BOA 201 BOA 281 BOA 361 BOA 441 BOA 521 BOA 601
8
BOA 40 BOA 120 BOA 200 BOA 280 BOA 360 BOA 440 BOA 520 BOA 600
7
BOA 31 BOA 111 BOA 191 BOA 271 BOA 351 BOA 431 BOA 511 BOA 591
6
BOA 30 BOA 110 BOA 190 BOA 270 BOA 350 BOA 430 BOA 510 BOA 590
5
BOA 21 BOA 101 BOA 181 BOA 271 BOA 341 BOA 421 BOA 501 BOA 581
4
BOA 20 BOA 100 BOA 180 BOA 260 BOA 340 BOA 420 BOA 500 BOA 580
3
BOA 11 BOA 91 BOA 171 BOA 251 BOA 331 BOA 411 BOA 491 BOA 571
2
BOA 10 BOA 90 BOA 170 BOA 250 BOA 330 BOA 410 BOA 490 BOA 570
1
BOA 01 BOA 81 BOA 161 BOA 241 BOA 321 BOA 401 BOA 481 BOA 561
0
BOA 00 BOA 80 BOA 160 BOA 240 BOA 320 BOA 400 BOA 480 BOA 560
BOAR1
BOAR2
BOAR3
BOAR4
BOAR5
BOAR6
BOAR7
Name BOAn1 - BOAn0 (See Note 1)
Description Backplane Output Advancement Bits 1 - 0: The binary value of these two bits defines the backplane output advancement of the BSTo outputs. The backplane output advancement can be selected from 0 to - 3/8 C8i clock periods. See Table 20 for details.
Note 1: n denotes a BSTo stream number from 0 to 63.
Table 19 - Backplane Output Advancement Registers (BOAR0 to BOAR7)
Backplane Output Advancement C8i (period) 0 (Default) - 1/8 - 1/4 - 3/8 16.384Mb/s (bit) 0 - 1/4 - 1/2 - 3/4 32.768Mb/s (bit) 0 - 1/2 -1 - 1 1/2
Corresponding Advancement Bits BOAn1 0 0 1 1 BOAn0 0 1 0 1
Table 20 - Backplane Output Advancement Programming Table
50
Zarlink Semiconductor Inc.
Data Sheet
Read/Write Address: 007EH Reset Value: 0000H
15 0 14 0 13 0 12 0 11 BDS B5 10 BDS B4 9 BDS B3 8 BDS B2 7 BDS B1 6 BDS B0 5 BDS A5 4 BDS A4 3 BDS A3 2 BDS A2
MT90868
1 BDS A1
0 BDS A0
Bit 15 - 12 11 - 6 5-0
Name Unused BDSB5 - 0 BDSA5 - 0
Description Reserved. In normal functional mode, these bits MUST be set to zero. Backplane Data Stream Address Bits for Stream B: The binary value of these bits refers to the backplane input data stream. Backplane Data Stream Address Bits for Stream A: The binary value of these bits refers to the backplane input data stream.
Table 21 - Backplane Data Input Selection Register (BDISR) Bits
Read/Write Address: 007FH Reset Value: 0000H
15 0 14 0 13 0 12 0 11 BDS D5 10 BDS D4 9 BDS D3 8 BDS D2 7 BDS D1 6 BDS D0 5 BDS C5 4 BDS C4 3 BDS C3 2 BDS C2 1 BDS C1 0 BDS C0
Bit 15 - 12 11 - 6 5-0
Name Unused BDSD5 - 0 BDSC5 - 0
Description Reserved. In normal functional mode, these bits MUST be set to zero. Backplane Data Stream Address Bits for Stream D: The binary value of these bits refers to the backplane input data stream. Backplane Data Stream Address Bits for Stream C: The binary value of these bits refers to the backplane input data stream.
Table 22 - Backplane Data Memory Read Selection Register (BDMRSR) Bits
Read/Write Address: 0080H Reset Value: 0000H
15 0 14 0 13 0 12 0 11 LDS F5 10 LDS F4 9 LDS F3 8 LDS F2 7 LDS F1 6 LDS F0 5 LDS E5 4 LDS E4 3 LDS E3 2 LDS E2 1 LDS E1 0 LDS E0
Bit 15 - 12 11 - 6 5-0
Name Unused LDSF5 - 0 LDSE5 - 0
Description Reserved. In normal functional mode, these bits MUST be set to zero. Local Data Stream Address Bits for Stream F: The binary value of these bits refers to the local input data stream. Local Data Stream Address Bits for Stream E: The binary value of these bits refers to the local input data stream.
Table 23 - Local Data Memory Read Selection Register (LDMRSR) Bits
Zarlink Semiconductor Inc. 51
MT90868
Read/Write Address: 0081H Reset Value: 0000H
15 0 14 0 13 0 12 LBR SA5 11 LBR SA4 10 LBR SA3 9 LBR SA2 8 LBR SA1 7 LBR SA0 6 LBR CA6 5 LBR CA5 4 LBR CA4 3 LBR CA3 2 LBR CA2
Data Sheet
1 LBR CA1
0 LBR CA0
Bit 15 - 13 12 - 7 6-0
Name Unused LBRSA5 - 0 LBRCA6 - 0
Description Reserved. In normal functional mode, these bits MUST be set to zero. Local BER Receive Stream Address Bits: The binary value of these bits refers to the local input stream which receives the BER data. Local BER Receive Channel Address Bits: The binary value of these bits refers to the local input channel in which the BER data starts to be compared.
Table 24 - Local BER Start Receiving Register (LBSRR) Bits
Read/Write Address: 0082H Reset Value: 0000H
15 0 14 0 13 0 12 0 11 0 10 0 9 0 8 0 7 0 6 LBL6 5 LBL5 4 LBL4 3 LBL3 2 LBL2 1 LBL1 0 LBL0
Bit 15 - 7 6-0
Name Unused LBL6 - 0
Description Reserved. In normal functional mode, these bits MUST be set to zero. Local BER Length Bits: The binary value of these bits refers to the number of channels, the BER data will last. The maximum number of local BER channels is 127. Table 25 - Local BER Length Register (LBLR) Bits
Read/Write Address: 0083H Reset Value: 0000H
15 LBC 15 14 LBC 14 13 LBC 13 12 LBC 12 11 LBC 11 10 LBC 10 9 LBC 9 8 LBC 8 7 LBC 7 6 LBC 6 5 LBC 5 4 LBC 4 3 LBC 3 2 LBC 2 1 LBC 1 0 LBC 0
Bit 15 - 0
Name LBC15 - 0
Description Local Bit Error Rate Count: The binary value of these bits refers to the local bit error count. Table 26 - Local BER Count Register (LBCR) Bits
52
Zarlink Semiconductor Inc.
Data Sheet
Read/Write Address: 0084H Reset Value: 0000H
15 0 14 BBR SA5 13 BBR SA4 12 BBR SA3 11 BBR SA2 10 BBR SA1 9 BBR SA0 8 BBR CA8 7 BBR CA7 6 BBR CA6 5 BBR CA5 4 BBR CA4 3 BBR CA3 2 BBR CA2
MT90868
1 BBR CA1
0 BBR CA0
Bit 15 14 - 9 8-0
Name Unused BBRSA5 - 0 BBRCA8 - 0
Description Reserved. In normal functional mode, this bit MUST be set to zero. Backplane BER Receive Stream Address Bits: The binary value of these bits refers to the backplane input stream which receives the BER data. Backplane BER Receive Channel Address Bits: The binary value of these bits refers to the backplane input channel in which the BER data starts to be compared.
Table 27 - Backplane BER Start Receiving Register (BBSRR) Bits
Read/Write Address: 0085H Reset Value: 0000H
15 0 14 0 13 0 12 0 11 0 10 0 9 0 8 BBL8 7 BBL7 6 BBL6 5 BBL5 4 BBL4 3 BBL3 2 BBL2 1 BBL1 0 BBL0
Bit 15 - 9 8-0
Name Unused BBL8 - 0
Description Reserved. In normal functional mode, these bits MUST be set to zero. Backplane BER Length Bits: The binary value of these bits refers to the number of channels, the BER data will last. The maximum number of backplane BER channels is 511. Table 28 - Backplane BER Length Register (BBLR) Bits
Read/Write Address: 0086H Reset Value: 0000H
15 BBC 15 14 BBC 14 13 BBC 13 12 BBC 12 11 BBC 11 10 BBC 10 9 BBC 9 8 BBC 8 7 BBC 7 6 BBC 6 5 BBC 5 4 BBC 4 3 BBC 3 2 BBC 2 1 BBC 1 0 BBC 0
Bit 15 - 0
Name BBC15 - 0
Description Backplane Bit Error Rate Count: The binary value of these bits refers to the backplane bit error count. Table 29 - Backplane BER Count Register (BBCR) Bits
Zarlink Semiconductor Inc.
53
MT90868
15 LMSC 14 LSAB 5 13 LSAB 4 12 LSAB 3 11 LSAB 2 10 LSAB 1 9 LSAB 0 8 LCAB 8 7 LCAB 7 6 LCAB 6 5 LCAB 5 4 LCAB 4 3 LCAB 3 2
Data Sheet
1 LCAB 1
0 LCAB 0
LCAB 2
Bit 15
Name LMSC
Description Local Mode Selection Control: When this bit and the LTM0, LTM1 bits in the local connection memory high are low, the "backplane-to-local" switching is enabled.
LMSC 0 LTM1 Bit in LCMH 0 LTM0 Bit in LCMH 0 Per-Channel Operation Mode 'Backplane-to-local' switching
When this bit is high, the content of the LTM0, LTM1 bits in the local connection memory high select one of the operation modes described in the table below:.
LMSC 1 1 1 1 LTM1 Bit in LCMH 0 0 1 1 LTM0 Bit in LCMH 0 1 0 1 Per-Channel Operation Mode 'Local-to-local switching' High Impedance Msg Mode BER Test Mode
14 - 9 8 - 0*
LSAB5 - 0 LCAB8 - 0
Local Source Stream Address Bits: The binary value of these 6 bits represents the data stream number for the source (local or backplane) connection. Local Source Channel Address Bits: The binary value of these 9 bits represents the channel number that is the source (local or backplane) connection. Table 30 - Local Connection Memory low (LCML) Bits
*Note: Only Bit 7-0 will be used for per-channel message mode.
15 0
14 0
13 0
12 0
11 0
10 0
9 0
8 0
7 0
6 0
5 0
4 0
3 0
2 0
1 LTM 1
0 LTM 0
Bit 15 - 2 1-0
Name Unused LTM1 - 0 Reserved.
Description
Local TM Bits: These two bits control the LSTo output.
LTM1 0 0 0 1 1 LTM0 0 0 1 0 1 LMSC Bit in LCML 0 1 1 1 1 Per-Channel Operation Mode 'Backplane-to-local' switching 'Local-to-local' switching High Impedance Msg Mode BER Test Mode
Table 31 - Local Connection Memory High (LCMH) Bits
54
Zarlink Semiconductor Inc.
Data Sheet
15 BSRC =0 14 BTM 1 13 BTM 0 12 BSA B5 11 BSA B4 10 BSA B3 9 BSA B2 8 BSA B1 7 BSA B0 6 BCA B6 5 BCA B5 4 BCA B4 3 BCA B3 2
MT90868
1 BCA B1 0 BCA B0 BCA B2
Bit 15 14 - 13
Name BSRC BTM1 - 0
Description Backplane Source Control Bit: When this bit is low, the "local-to-backplane" switching is enabled and the source is from the local input port. Backplane TM Bits: These two bits control the backplane outputs.
BTM1 0 0 1 1 BTM0 0 1 0 1 Per-Channel Operation Mode Normal Output Tristate/Driven-High (See Bit 15 (BHIZ) in Table 5) Msg Mode BER Test Mode
12 - 7* 6-0*
BSAB5 - 0 BCAB6 - 0
Backplane Source Stream Address Bits: The binary value of these 6 bits represents the local data input stream number. Source Channel Address Bits: The binary value of these 7 bits represents the local input channel number.
*Note: Only Bit 7-0 will be used for per-channel message mode. *Note: The last channel (Ch255 or Ch511) of the backplane output streams BSTo60 to BSTo63 or BSTo58 to BSTo63 contains invalid output data when operated in the 16Mb/s or 32Mb/s mode respectively. Avoid using the last channel of these streams for the "local-to-backplane" switching.
Table 32 - Backplane Connection Memory (BCM) Bits for "Local-to-Backplane" Switching
Zarlink Semiconductor Inc.
55
MT90868
Data Sheet
15 BSRC =1
14 BTM 1
13 BTM 0
12 0
11 0
10 0
9 BSA B0
8 BCA B8
7 BCA B7
6 BCA B6
5 BCA B5
4 BCA B4
3 BCA B3
2 BCA B2
1 BCA B1
0 BCA B0
Bit 15 14 - 13
Name BSRC BTM1 - 0
Description Backplane Source Control Bit: When this bit is high, the "backplane-to backplane" switching is enabled and the source is from the backplane input port. Backplane TM Bits: These two bits control the backplane outputs.
BTM1 0 0 1 1 BTM0 0 1 0 1 Per-Channel Operation Mode Normal Output Tristate/Driven-High (See Bit 15 (BHIZ) in Table 5) Msg Mode BER Test Mode
12-10 9
Unused BSAB0
Reserved. Set to zero for normal operation. Backplane Source Stream Address Bits: When this bit is low, the source stream (Stream A) is selected. Stream A is defined in the BDISR register. When this bit is high, the source stream (Stream B) is selected. Stream B is defined in the BDISR register. Source Channel Address Bits: The binary value of these 9 bits represents the local input channel number.
8-0*
BCAB8 - 0
*Note: Only Bit 7-0 will be used for per-channel message mode.
Table 33 - Backplane Connection Memory (BCM) Bits for "Backplane-to-Backplane" Switching
Absolute Maximum Ratings*
Parameter 1 2 3 4 5 6 7 Core Supply Voltage I/O Supply Voltage Input Voltage Input Voltage (5V tolerant inputs) Continuous Current at digital outputs Package power dissipation Storage temperature Symbol VDD_CORE VDD_IO VI_3V VI_5V Io PD TS - 55 Min -0.5 -0.5 -0.5 -0.5 Max 2.5 5.0 VDD + 0.5 7.0 15 2 +125 Units V V V V mA W C
* Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.
56
Zarlink Semiconductor Inc.
Data Sheet
MT90868
Characteristics Sym TOP VDD_CORE VDD_IO VI VI_5V Min -40 1.71 3.0 0 0 Typ 25 1.8 3.3 3.3 5.0 Max +85 1.89 3.6 VDD_IO 5.5 Units C V V V V
Recommended Operating Conditions - Voltages are with respect to ground (VSS) unless otherwise stated.
1 2 3 4 5 Operating Temperature Positive Supply Positive Supply Input Voltage Input Voltage on 5V Tolerant Inputs
Typical figures are at 25C and are for design aid only: not guaranteed and not subject to production testing.
DC Electrical Characteristics - Voltages are with respect to ground (Vss) unless otherwise stated.
Characteristics 1 Core Supply Current 2 IO Pad Supply Current 3 Input High Voltage 4 Input Low Voltage 5 Input Leakage (input pins) Input Leakage (bi-directional pins) 6 Weak Pulldown Current for 3V tolerant input 7 Weak Pullup Current for 5V tolerant input 8 Weak Pulldown Current for 5V tolerant input 9 Input Pin Capacitance 10 Output High Voltage 11 Output Low Voltage 12 Output High Impedance Leakage 13 Output Pin Capacitance Sym IDD_CORE IDD_IO VIH VIL IIL IBL IPD_3V IPU_5V IPD_5V CI VOH VOL IOZ CO 5 2.4 0.4 5 10 2.0 0.8 5 5 50 -150 150 5 Min Typ Max 600 380 Units mA mA V V A A A A A pF V V A pF IOH = 10mA IOL = 10mA 0 < V < VDD_IO 0 Characteristics are over recommended operating conditions unless otherwise stated. Typical figure: at 25C, VDD_CORE at 1.8V and VDD_IO at 3.3V and are for design aid only: not guaranteed and not subject to production * testing. * Note 1: Maximum leakage on pins (output or I/O pins in high impedance state) is over an applied voltage (VIN).
AC Electrical Characteristics - Timing Parameter Measurement Voltage Levels
Characteristics 1 2 3 CMOS Threshold Rise/Fall Threshold Voltage High Rise/Fall Threshold Voltage Low Sym VCT VHM VLM Level 0.5VDD_IO 0.7VDD_IO 0.3VDD_IO Units V V V Conditions
Characteristics are over recommended operating conditions unless otherwise stated.
Zarlink Semiconductor Inc.
57
MT90868
AC Electrical Characteristics - Backplane and Local Clock Timing
Characteristic 1 2 3 4 5 6 7 8 9 Backplane Frame Pulse Width Backplane Frame Pulse Setup Time
before C8i clock falling edge
Data Sheet
Sym tBFPW tBFPS tBFPH tBCP tBCH tBCL trC8i, tfC8i tCVC8i tFPW4 tFOSF4 tFOHR4 tCP4 tCH4 tCL4 trC4o, tfC4o tFPW8 tFOSF8 tFOHR8 tCP8 tCH8 tCL8 trC8o, tfC8o tFPW16 tFOSF16 tFOHR16 tCP16 tCH16 tCL16 trC16o, tfC16o
Min 20 10 10 120 50 50 0 0 220 110 120 239 110 110 111 50 60 119 55 55 55 20 30 59 27 27
Typ 122
Max 230 90 90
Units ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
Notes
Backplane Frame Pulse Hold Time
from C8i clock falling edge
C8i Clock Period C8i Clock Pulse Width High C8i Clock Pulse Width Low C8i Clock Rise/Fall Time C8i Cycle to Cycle Variation FP4o Width
from the FP4o falling edge to the C4o falling edge
122 61 61 2 2 244 122 122 244 122 122 122 61 61 122 61 61 61 30 40 61 30 30
124 70 70 3 6 270 135 145 249 135 135 7 133 75 80 125 67 67 7 67 45 50 63 33 33 7
10 FP4o Output Setup 11 FP4o Output Hold
from the C4o falling edge to the FP4o rising edge
CL=30pF
12 C4o Clock Period 13 C4o Clock Pulse Width High 14 C4o Clock Pulse Width Low 15 C4o Clock Rise/Fall Time 16 FP8o Width 17 FP8o Output Setup
from the FP8o falling edge to the C4o falling edge
18 FP8o Output Hold
from the C4o falling edge to the FP8o Rising edge
19 C8o Clock Period 20 C8o Clock Pulse Width High 21 C8o Clock Pulse Width Low 22 C8o Clock Rise/Fall Time 23 FP16o Width 24 FP16o Output Setup
from the FP16o falling edge to the C4o falling edge
25 FP16o Output Hold
from the C4o falling edge to the FP16o rising edge
26 C16o Clock Period 27 C16o Clock Pulse Width High 28 C16o Clock Pulse Width Low 29 C16o Clock Rise/Fall Time
Characteristics are over recommended operating conditions unless otherwise stated. Typical figures are at 25C, VDD_CORE at 1.8V and VDD_IO at 3.3V and are for design aid only: not guaranteed and not subject to production testing.
58
Zarlink Semiconductor Inc.
Data Sheet
tBFPW FP8i tBFPS tBFPH tBCP tBCH C8i tfC8i trC8i tBCL
MT90868
Backplane Port Timing
tFPW4 FP4o tFOSF4 tLCP4 tCH4 C4o tfC4o tFPW8 FP8o tFOSF8 tLCL8 C8o trC8o tFPW16 FP16o tCL16 C16o trC16o tfC16o tCH16 tFOSF16 tFOHR16 tLCP16 tfC8o tCH8 tFOHR8 tCP8 trC4o tCL4 tFOHR4
Local Port Timing Figure 18 - Backplane and Local Clock Timing Diagram
Zarlink Semiconductor Inc.
59
MT90868
Characteristic 1 Input data sampling point for Bit 0, Bit 2, Bit 4 and Bit 6 Sym tIDS0 tIDS2 tIDS4 tIDS6 tIDS1 tIDS3 tIDS5 tIDS7 tSIS tSIH tSOD0 tSOD2 tSOD4 tSOD6 tSOD1 tSOD3 tSOD5 tSOD7 Min 106 Typ 107 Max 108
Data Sheet
AC Electrical Characteristics - Backplane Data Timing for the 16Mb/s mode
Units ns Notes
2
Input data sampling point for Bit 1, Bit 3, Bit 5 and Bit 7
45
46
47
ns
3 4 5
Backplane Serial Input Set-up Time Backplane Serial Input Hold Time Backplane Serial Output Delay for Bit 0, Bit 2, Bit 4 and Bit 6
3.5 1.5 68 73.5 79
ns ns ns CL=30pF
6
Backplane Serial Output Delay for Bit 1, Bit 3, Bit 5 and Bit 7
7
12.5
18
ns
See Figure 19 in the next page for the 16Mb/s mode backplane data timing diagram.
Characteristics are over recommended operating conditions unless otherwise stated. Typical figures are at 25C, VDD_CORE at 1.8V and VDD_IO at 3.3V and are for design aid only: not guaranteed and not subject to production testing.
60
Zarlink Semiconductor Inc.
Data Sheet
FP8i
C8i tIDS6 tIDS7 tIDS4 tIDS5 tSIS tSIH
Bit0 Ch255 Bit6 Ch0 Bit5 Ch0 Bit4 Ch0 Bit7 Ch0 Bit3 Ch0 Bit2 Ch0
tIDS2 tIDS3
BSTi0 - 63 16.384Mb/s tSOD6 tSOD7
Bit0 Ch255 Bit7 Ch0 Bit6 Ch0 Bit5 Ch0
tSOD4 tSOD5
Bit4 Ch0
tSOD2 tSOD3
Bit3 Ch0 Bit2 Ch0
Figure 19 - Backplane Data Timing Diagram (16Mb/s Mode)
Zarlink Semiconductor Inc. C8i 16.384Mb/s
Bit2 Ch0
BSTo0 - 63 16.384Mb/s
tIDS0 tIDS1
Bit1 Ch0 Bit0 Ch0
VTT tSOD0 tSOD1 BSTo0 - 63
Bit2 Ch0 Bit1 Ch0 Bit0 Ch0
MT90868
VTT
61
MT90868
Characteristic 1 2 3 4 5 6 7 8 9 Input data sampling point for Bit 0 and Bit 4 Input data sampling point for Bit 1 and Bit 5 Input data sampling point for Bit 2 and Bit 6 Input data sampling point for Bit 3 and Bit 7 Backplane Serial Input Set-up Time Backplane Serial Input Hold Time Backplane Serial Output Delay for Bit 0 and Bit 4 Backplane Serial Output Delay for Bit 1 and Bit 5 Backplane Serial Output Delay for Bit 2 and Bit 6 Sym tIDS0 tIDS4 tIDS1 tIDS5 tIDS2 tIDS6 tIDS3 tIDS7 tSIS tSIH tSOD0 tSOD4 tSOD1 tSOD5 tSOD2 tSOD6 tSOD3 tSOD7 Min 113.5 82.6 52.3 21.8 3.5 1.5 99 69 38 8 103.5 73.5 42.5 12.5 108 78 47 17 Typ 114.5 83.6 53.3 22.8 Max 115.5 84.6 54.3 23.8
Data Sheet
AC Electrical Characteristics - Backplane Data Timing for the 32Mb/s mode
Units ns ns ns ns ns ns ns CL=30pF ns ns ns Notes
10 Backplane Serial Output Delay for Bit 3 and Bit 7
Characteristics are over recommended operating conditions unless otherwise stated. Typical figures are at 25C, VDD_CORE at 1.8V and VDD_IO at 3.3V and are for design aid only: not guaranteed and not subject to production testing.
FP8i
VTT
C8i tIDS5 tIDS4 tIDS2 tIDS3 tIDS1 tIDS0
VTT
tIDS6 tIDS7 tSIS
tSIH BSTi0 - 63 32.768Mb/s
Bit2 Ch511 Bit1 Ch511 Bit0 Ch511 Bit7 Ch0 Bit6 Ch0 Bit5 Ch0 Bit4 Ch0 Bit3 Ch0 Bit2 Ch0 Bit1 Ch0 Bit0 Ch0
VTT
tSOD4 tSOD5 tSOD6 tSOD7 BSTo0 - 63 32.768Mb/s
Bit2 Ch511 Bit1 Ch511 Bit0 Ch511 Bit7 Ch0 Bit6 Ch0 Bit5 Ch0 Bit4 Bit7 Ch0
tSOD0 tSOD1 tSOD2 tSOD3
Bit3 Ch0 Bit2 Ch0 Bit1 Bit1 Ch0 Ch0 Bit0 Ch0
VTT
Figure 20 - Backplane Data Timing Diagram (32Mb/s Mode)
62
Zarlink Semiconductor Inc.
Data Sheet
AC Electrical Characteristics - Local Data Timing
Characteristic 1 2 3 4 Input data sampling point Local Serial Input Set-up Time Local Serial Input Hold Time Local Serial Output Delay Sym tIDS tSIS tSIH tSOD Min 90 3.5 1.5 7 12.5 18 Typ 91.6 Max 94
MT90868
Units ns ns ns ns CL=30pF Notes
Characteristics are over recommended operating conditions unless otherwise stated. Typical figures are at 25C, VDD_CORE at 1.8V and VDD_IO at 3.3V and are for design aid only: not guaranteed and not subject to production testing.
FP8o C8o tIDS tSIS tSIH LSTi0 - 63 8.192Mb/s LSTo0 - 63 8.192Mb/s
Bit7 Ch127 Bit0 Ch127 Bit7 Ch0
VTT
tSOD
Bit7 Ch0 Bit6 Ch0
VTT
Figure 21 - Local Data Timing Diagram
AC Electrical Characteristics - Backplane and Local Output HiZ Timing
Characteristic 1 BSTo/LSTo delay - Active to High-Z - High-Z to Active Output Driver Enable (ODE) Delay Sym tDZ, tZD tODE 13 Min Typ Max 30 25 Units ns ns Test Conditions RL=1K, CL=30pF, See Note 1 RL=1K, CL=30pF, See Note 1
2
Characteristics are over recommended operating conditions unless otherwise stated. Typical figures are at 25C, VDD_CORE at 1.8V and VDD_IO at 3.3V and are for design aid only: not guaranteed and not subject to production testing.
Note 1:
High Impedance is measured by pulling to the appropriate rail with RL, with timing corrected to cancel time taken to discharge CL.
C8i/C8o tDZ BSTo/LSTo Valid Data HiZ tZD BSTo/LSTo HiZ Valid Data
VTT
VTT
ODE tODE tODE
VTT
VTT
STo
HiZ
Valid Data
HiZ
VTT
Per-Channel Tristate Timing
ODE Pin Tristate Timing
Figure 22 - Per-Channel and ODE Tristate Control Timing Diagrams
Zarlink Semiconductor Inc.
63
MT90868
Characteristics 1 2 3 4 5 6 7 8 9 CS setup from DS falling R/W setup from DS falling Address setup from DS falling CS hold after DS rising R/W hold after DS rising Address hold after DS rising Data setup from DTA Low on Read Data hold on read Valid write data setup Sym tCSS tRWS tADS tCSH tRWH tADH tDDR tDHR tWDS tDHW tAKD tAKH 25 8 65 14 70 20 Min 0 15 5 0 5 5 4 10 10 Typ Max Units ns ns ns ns ns ns ns ns ns ns ns ns
Data Sheet
AC Electrical Characteristics - Non-Multiplexed Microprocessor Port Timing
Test Conditions
CL=30pF CL=30pF, RL=1K Note 1
10 Data hold on write 11 Acknowledgment Delay 12 Acknowledgment Hold Time
CL=30pF CL=30pF, RL=1K, Note 1
Characteristics are over recommended operating conditions unless otherwise stated. Typical figures are at 25C, VDD_CORE at 1.8V and VDD_IO at 3.3V and are for design aid only: not guaranteed and not subject to production testing.
Note 1:
High Impedance is measured by pulling to the appropriate rail with RL, with timing corrected to cancel time taken to discharge CL.
DS tCSS CS tRWS R/W tADS A0-A15
VALID ADDRESS
VTT
tCSH
VTT tRWH VTT tADH VTT tDHR
D0-D15 READ tWDS D0-D15 WRITE
VALID READ DATA
VTT tDHW
VALID WRITE DATA
VTT
tDDR DTA tAKD tAKH VTT
Figure 23 - Motorola Non-Multiplexed Bus Timing
64
Zarlink Semiconductor Inc.
Data Sheet
AC Electrical Characteristics - JTAG Test Port and Reset Pin Timing
Characteristic 1 2 3 4 5 6 7 8 9 TCK Clock Period TCK Clock Pulse Width High TCK Clock Pulse Width Low TMS Set-up Time TMS Hold Time TDi Input Set-up Time TDi Input Hold Time TDo Output Delay TRST pulse width Sym tTCKP tTCKH tTCKL tTMSS tTMSH tTDIS tTDIH tTDOD tTRSTW tRSTW 200 500 Min 200 80 80 10 10 20 90 30 Typ Max
MT90868
Units ns ns ns ns ns ns ns ns ns ns CL=30pF CL=30pF CL=30pF Notes
10 Reset pulse width
Characteristics are over recommended operating conditions unless otherwise stated. tTCKL TCK tTCKH tTCKP
tTMSS TMS
tTMSH
tTDIS tTDIH TDi tTDOD TDo
tTRSTW TRST
Figure 24 - JTAG Test Port Timing Diagram
tRSTW Reset
Figure 25 - Reset Pin Timing Diagram
Zarlink Semiconductor Inc.
65
Figure 26 - Bit Interleaving Mode Timing Diagram for Backplane Input and Output Streams
Ch509 Bit0 Ch510 Bit0 Ch511 Bit0 Ch0 Bit7 Ch1 Bit7 Ch2 Bit7 Ch3 Bit7 Ch0 Bit6 Ch1 Bit6 Ch2 Bit6 Ch3 Bit6 Ch0 Bit5 Ch1 Bit5 Ch2 Bit5 Ch3 Bit5 Ch0 Bit4 Ch1 Bit4 Ch2 Bit4 Ch3 Bit4 Ch0 Bit3 Ch1 Bit3 Ch2 Bit3 Ch3 Bit3 Ch0 Bit2 Ch1 Bit2 Ch2 Bit2 Ch3 Bit2 Ch0 Bit1 Ch1 Bit1 Ch2 Bit1 Ch3 Bit1 Ch0 Bit0 Ch1 Bit0 Ch2 Bit0 Ch3 Bit0 Ch4 Bit7 Ch5 Bit7 Ch6 Bit7 Ch7 Bit7 Ch4 Bit6 Ch5 Bit6 Ch6 Bit6 Ch7 Bit6 Ch4 Bit5 Ch5 Bit5 Ch6 Bit5 Ch7 Bit5 Ch4 Bit4 Ch5 Bit4 Ch6 Bit4 Ch7 Bit4
Data Sheet
BSTo0-63 (32Mb/s) Bit Interleaving
Ch511 Bit1 Ch508 Bit0 Ch509 Bit0 Ch510 Bit0 Ch511 Bit0 Ch0 Bit7 Ch1 Bit7 Ch2 Bit7 Ch3 Bit7 Ch0 Bit6 Ch1 Bit6 Ch2 Bit6 Ch3 Bit6 Ch0 Bit5 Ch1 Bit5 Ch2 Bit5 Ch3 Bit5 Ch0 Bit4 Ch1 Bit4 Ch2 Bit4 Ch3 Bit4 Ch0 Bit3 Ch1 Bit3 Ch2 Bit3 Ch3 Bit3 Ch0 Bit2 Ch1 Bit2 Ch2 Bit2 Ch3 Bit2 Ch0 Bit1 Ch1 Bit1 Ch2 Bit1 Ch3 Bit1 Ch0 Bit0 Ch1 Bit0 Ch2 Bit0 Ch3 Bit0 Ch4 Bit7 Ch5 Bit7 Ch6 Bit7 Ch7 Bit7 Ch4 Bit6 Ch5 Bit6 Ch6 Bit6 Ch7 Bit6 Ch4 Bit5 Ch5 Bit5 Ch6 Bit5 Ch7 Bit5 Ch4 Bit4 Ch5 Bit4 Ch6 Bit4
66
MT90868
APPENDIX - Bit Interleaving Mode
When the bit interleaving mode is selected for the backplane port, the delay between the frame pulse signals is six 32Mb/s channels plus 10 cycles of C8i. See Figure 27 for the frame pulse offset timing in the bit interleaving mode. When the device is in the bit interleaving mode, the bit error rate test feature is not available for the backplane port BSTi0 - 63 and BSTo0 - 63.
The bit interleaving mode performs the bit grooming function for the backplane input and output streams which have data rate of 32Mb/s. This mode is enabled by setting the bit interleaving mode enable (BIME) pin to one. The bit shuffling is performed for every four-channel as indicated in FIgure 26. The input delay and the output advancement shown in FIgure 26 are realized by programming the backplane input delay registers (LIDR0 to LIDR21) and the backplane output advancement registers (BOAR0 to BOAR7) as described in Table 11 & 12 and Table 20 respectively.
FP8i (8kHz)
C8i (8.192MHz)
Channel 511 Channel 0 Channel 1 Channel 2 Channel 3 Channel 4 Channel 5
Zarlink Semiconductor Inc.
TS 127 Timeslot 0 Output Stream advanced by -1/4 C8i by programming the BOAR registers Timeslot 0
BSTi0-63/STo0-63 (32Mb/s) No Bit Interleaving
3210765432107654321076543210765432107654321076543210
Input Stream delayed by 1/4 C8i by programming the BIDR registers Timeslot 1
BSTi0-63 (32Mb/s) Bit Interleaving
Timeslot 1
Data Sheet
11 (32Mb/s) channels
FP8i C8i
TS127 Time Slot 0 Time Slot 1 Time Slot 2
BSTi/BSTo0-63 (32Mb/s) FP8o C8o
Channel 125 7 6 5 6 5 4 3 4 2 1 7 0 Channel 126 3 2 1 0 7 6 5 Channel 127 4 3 2 1 0 7 Channel 0 6 5 4
Figure 27 - Backplane and Local Frame Pulse Alignment Diagram for the Bit Interleaving Mode
Zarlink Semiconductor Inc.
LSTi/LSTo0-63 (8Mb/s)
MT90868
67
Package Code Previous package codes
For more information about all Zarlink products visit our Web Site at
www.zarlink.com
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. trading as Zarlink Semiconductor or its subsidiaries (collectively "Zarlink") is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink. This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink's conditions of sale which are available on request.
Purchase of Zarlink's I2C components conveys a licence under the Philips I2C Patent rights to use these components in an I2C System, provided that the system conforms to the I2C Standard Specification as defined by Philips. Zarlink and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc. Copyright 2002, Zarlink Semiconductor Inc. All Rights Reserved.
TECHNICAL DOCUMENTATION - NOT FOR RESALE


▲Up To Search▲   

 
Price & Availability of MT90868

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X